The SDT Sherlog TA ultrasonic detector and multi-transmitter

Technical and User's Instruction Manual

Copyright © 2003 by SDT International n.v. s.a.

Second Edition, July 2003.

All rights reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without the written permission of SDT International n.v. s.a.

The information herein is believed to be accurate to the best of our knowledge.

Due to continued research and development, specifications of this product can change without prior notice.

In this manual, SDT International n.v. s.a. is named SDT.

SDT International n.v. s.a. Bd. de l'Humanité 415, B – 1190 Brussels (BELGIUM)

Tel: ++32.2.332.32.25 Fax: ++32.2.376.27.07

e-mail: info@sdt.be

web page: http://www.sdt.be

Summary

First and foremost	5
The SDT Sherlog TA detector	13
The SDT 8 Sherlog multi-transmitter multisetting	63
The transfer software	79
Using the SDT Sherlog TA for ultrasonic and non ultrasonic applications	85
Using the SDT Sherlog TA for an ultrasonic hatch cover tightness procedure	93
Sensors and options	117
Technical specifications	155
Appendixes	163
Index	171
Contents	179

First and foremost

1. Foreword

1.1 PURPOSE OF THE MANUAL

This Users Manual is designed as an educational guide and reference tool for anyone who wishes to use the *Sherlog* equipment for its intended purposes. Inside you will find information pertaining to:

- The description and functionality of the equipment.
- Its many uses.
- How to care for and maintain the equipment.

Recommendations relative to the declaration of compliance to the European Community's regulations, the guarantee and the different areas of application are included into this Users Manual.

SDT produces this Users Manual with the sole purpose of supplying simple and accurate information to the user. **SDT** shall not be held responsible for any misinterpretation of this Users Manual. Despite our efforts to provide an accurate manual, it may contain technical errors beyond our control. If in doubt, contact your local **SDT** distributor for clarification. While every effort was made to present a true and accurate text, modifications and/or improvements to the product described herein can be made at any time without corresponding changes being made to this Users Manual.

Please read this Users Manual carefully, and file it in a safe place for future reference. All requests and warnings of this Users Manual must be followed in order to maximize the value of your investment. This Users Manual and its contents remain the inalienable property of **SDT**. The information herein is believed to be accurate to the best of our knowledge.

All rights reserved. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without the written permission of **SDT**.

1.2 OPERATOR SAFETY

The operator must take all necessary precautions when using the equipment in high risk areas (under high noise levels, high light and radiation levels, extreme temperature conditions, chemical corrosive elements, etc.).

The user must be particularly vigilant when entering enclosed zones (holds, silos) where a risk of asphyxiation or lack of oxygen is possible. There is no likelihood of direct consequences for the hearing capacities of the operator.

The instrument **MAY NOT** be used inside any classified zone requiring explosion proof equipment.

1.3 END OF LIFE DESTRUCTION OF THE EQUIPMENT

When the equipment becomes obsolete, the internal battery pack must be removed from the equipment, and must be disposed of in such a way that conforms to the environmental laws of the country where the equipment is located.

The outer casing and other internal components may be destroyed by the appropriate specialized organizations.

The mandatory stipulations of applicable law take precedence over the contents of this Users Manual.

2. Description of the Sherlog TA set

The complete Sherlog TA kit which contains:

Sherlog TA detector assembly

- 1 x Sherlog TA detector with rubber protection.
- 1 x Battery pack for Sherlog TA detector.
- 1 x Battery loader for Sherlog TA detector.
- 1 x Flexible sensor 820 mm for Sherlog TA detector (tube + flex).
- 1 x extension accessories for Sherlog TA detector (threaded tip, rubber tip and 2 plastic tubes).
- 1 x Headphones 130 dB, noise isolating.
- 1 x Y plug connector for headphones.
- 1 x 3.5" diskette for data transfer from Sherlog detector to PC.
- 1 x Cable RS232 Stewart Sub D9 female. Length 1.5 m.

Sherlog SDT 8 multi-transmitter

- 1 x SDT 8 Sherlog multi-transmitter, multisetting, with battery.
- 1 x Leather case for multi-transmitter.
- 1 x Spare battery pack for multi-transmitter.
- 1 x Battery loader for Sherlog multi-transmitter.
- 1 x Battery loader adapter for Sherlog multi-transmitter.
- 1 x Screw driver for the *Sherlog* multi-transmitter battery cover.

Others

- 1 x Technical and instruction manual.
- 1 x Calibration certificate.
- 1 x Copy of all current Type Approval certificates.

3. The certificates

3.1 THE TYPE APPROVAL CERTIFICATES

As requested by IACS, Unified Requirements UR.Z17 (Nov. 1999), the *Sherlog TA* has been type approved by:

The Type Approval certificates are valid for four or five years.

3.2 THE CALIBRATION CERTIFICATE

As required by Class, the *Sherlog TA* detector must be recalibrated every two years. Fac simile of the Calibration Certificate is available in chapter *Appendixes*.

3.3 THE CERTIFICATE OF QUALIFICATION

It is obtained after having successfully passed the theoretical and practical onboard training program. Class has limited its validity to three years. Fac simile of the Certificate of Qualification is available in chapter *Appendixes*.

3.4 THE CERTIFICATE OF ORIGIN

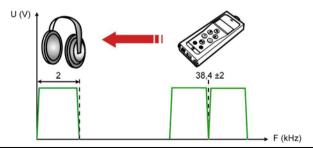
It can be supplied on demand.

The SDT Sherlog TA detector

4. Presentation

4.1 OPERATING PRINCIPLE OF THE SHERLOG

4.1.1 General


Ultrasonic waves are sound waves beyond the range of human hearing (>20 kHz). To be detected, we need to use an instrument like the *Sherlog*, with the capability to receive ultrasonic frequencies and convert them to corresponding audible sounds.

Ultrasonic waves travel through gases (air), liquids (water, fuel) and solids (bearing housings) in a very directional nature; unlike audible sounds which disperse in all directions. Ultrasounds are low energy sound waves, therefore they are quickly absorbed by the medium through which they travel. Ultrasonic waves are generated by:

- Naturally occurring mechanical phenomena (friction of rotating equipment), pressure or vacuum leaks (pneumatic, gas, steam) or arcing and corona (electrical problems).
- Artificially by means of a transmitter (like the SDT 200 mW or the SDT 8 Multi-transmitter - 8 x 125 mW) for tightness testing.

4.1.2 Applying ultrasonic waves on the Sherlog

The Sherlog TA detects ultrasonic signals, converts them to audible frequencies, and amplifies them. The challenge is to transpose the received signal, using the heterodyne technology, into an interpretable audible signal. This solution extends the ability of the human ear beyond the simple audible range and into the ultrasonic one.

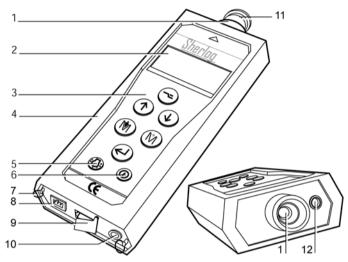
The main function of the Sherlog TA is converting high frequency signals into audible.

4.2 SPECIFICATION OF THE SHERLOG TA

They are summarized in this table.

- LDC display.
- Built-in (internal) ultrasonic sensor.
- Headphones output.
- Connector for charging unit.
- Connector for PC.
- Data storage: 1,000 locations, each with 4 data storage positions for ultrasonic and non ultrasonic applications.
- Tamper-proof hatch cover survey routine software with data logging and data transfer to PC capacity.
- Transfer software on 3.5" diskette (1).
- Sensor connector for ultrasonic and non ultrasonic external sensors (see Chapters 24, 25 and 28).
- (1) Through the connector for PC.

4.2.1 Updating possibilities


Regularly and for different reasons, the software version from the *Sherlog TA* ultrasonic detector can be updated, the most common reason being a technical improvement in the core software.

This makes the *Sherlog TA* the only Ultrasonic Multifunctional detector in the world that's always *up to date*.

Every owner of a *Sherlog TA* detector can download this software update. The only things needed are a cable, an Internet connection and an unzip software.

4.3 FRONT AND BACK SIDE (FULL VIEW)

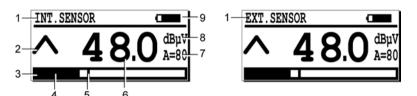
Presents itself as follows:

N°	Function	N°	Function
1.	Built-in ultrasonic sensor and cap.	7.	Carrying strap rings.
2.	LCD display.	8.	Battery charger connector.
3.	Keyboard.	9.	RS 232 connector and cap.
4.	Holster.	10.	Headphones connector.
5.	Backlight switch.	11.	Sensor protective cap.
6.	On/Off switch.	12.	External sensor connector.
T ,	1		

The elements of the Sherlog TA.

204

4.4 THE KEYBOARD


The keys correspond to the following functions:

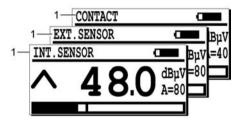
Key	Function	Remarks
	First press : access to the menus and sub-menus.	See chapter "The main menu".
	Second press : return to previous or basic screens.	
\bigcirc	Increase amplification level.	The A on screen is modified.
	Scroll up through menus.	
	Increment alphanumeric digits.	Used during the enter comment procedure or to set date, etc.
\bigcirc	Reduce amplification level.	The A on screen is modified.
	Scroll down through menus and sub-menus.	
	Decrement letters and figures.	Used during the enter comment procedure or to set date, etc.
(4)	Measurement peak.	Keep the key depressed to display the value. Only used when measuring ultrasound and noise levels (dBµV and dBA).
	Move the cursor to the right.	Used during the enter comment procedure or to set date, etc.
	Storage of the shown (measured) value.	Only available when a valid measurement has been taken, by pressing the (**) key. Measured value is stored on the position selected; reading is done through the View data menu.
	Move the cursor to the left.	Used during the enter comment procedure or to set date, etc.
Θ	Enter.	Used to validate and confirm a shown selection.
	Activate backlighting.	Press the key to switch on the backlight. Pressing the key again switches off the backlight. The backlighting switches off automatically if no buttons are used within a pre-defined period of time set by the user.
\bigcirc	On/Off switch.	First key press: switch on the unit.
\odot		Second key press: switch off the unit.
		The unit switches off automatically if no buttons are touched on the keypad within pre-defined period of time set by the user.

4.5 THE DISPLAY

4.5.1 Basic screen

The following table summarizes the visible icons.

Primary icon locations on the display of the Sherlog.

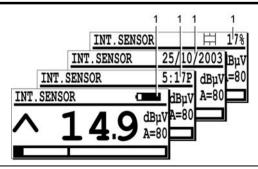

202

N°	Function	Remarks
1	Type of sensor	Type of sensor used / connected.
2	Amplification indicator	Only for ultrasound (dBµV) measurements.
3	Bar graph.	Visual indications of the measured value.
4	Signal indicator.	This vertical line shows the actual level of the signal.
5	Peak and hold maximum signal indicator.	This indicator shows the maximum signal detected and resets itself after approximately 2 seconds.
6	Measurement value	The digital measured value (dBµV by default).
7	Amplification level	A = selected amplification level.
8	Unit of measurement.	Display of the measurement unit with the external connected sensor (dBµV, T°, dBA, RPM, etc.). dBµV is displayed when no sensor is connected.
9	Information	Display alternates between battery level indicator, time, used memory and date.
	Battery level indicator.	100% black corresponds to a fully charged battery.
	Time (Hour)	Current time.
	Used memory	In % of the RAM used. 100% = fully used memory.
	Date	Set date.

4.5.2 Type of sensor used

The type of sensor in use (rep. 1) is displayed at the upper left corner of the display. The system auto recognises externally connected sensors and switches automatically to the corresponding measurement unit.

Primary icon locations on the display of the Sherlog.


263

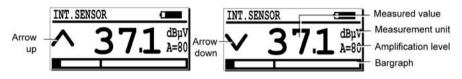
4.5.3 Date / Autonomy / Time / Memory left

This information (rep. 1) is cycling on the upper right corner of the screen.

The remaining capacity in the battery is expressed by an icon (the amount of blackening corresponds to the remaining capacity of the battery). The memory capacity used is expressed in %. The following table shows the icons used.

Icon	Signification
06/16/2003	Date in the local format.
0	Estimated remaining capacity of the battery. A 100 % black icon indicates a fully charged battery.
5:17 P	Set time.
凸 3%	Used capacity of the memory.

Example of revolving information icons


029 -130

Presentation

4.5.4 The measured data and its additional information

The display shows the measured data and its additional information described in the lower paragraphs, which are:

- Measured value
- Measurement unit
- Selected amplification level.
- Up and down arrows for adjusting the correct amplification level.
- Bargraph.

The main information relating to the measurement.

131

The measured value

The measured value is shown in the middle of the screen. It should be remembered that the memorized measurements can be recalled at any time, by pressing the key and selecting the view data menu. Refer to chapter 8 for more details on this operation.

The measurement unit

The measurement unit is shown on the right side of the display, such as $\mathtt{d}\mathtt{B}\mu V$ by default.

The amplification level

This function is only active when the *Sherlog* is used to detect and measure airborne ultrasounds.

The amplification level A varies on a scale from 10 to 80.

Due to logarithmic characteristics, each and every time the ${\tt A}$ level is increased (decreased) by 10 (next or previous step), the gain is multiplied (divided) by approximately 3.

For example:

- A = 40 -> Gain = 100.
- A = 50 -> Gain = 300.

Understandably, when the ultrasonic level is high, little amplification is needed. When the ultrasonic level is very low (small leaks), the amplification required will be high.

When, in presence of a source of ultrasounds, the *Sherlog* must be adjusted to an optimal **A** level. *Sherlog* assists you on the screen by means of the \wedge and \vee arrows at the left side of the screen.

- A indicates that the amplification level is to low and that a higher amplification level should be selected.
- Vindicates that the amplification level is too high and that a lower amplification level should be selected.

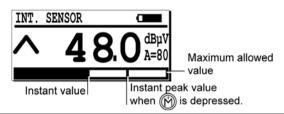
The adjustment of the optimal ${\bf A}$ level is obtained by pressing ${igoplus}$ to increase or by pressing ${igoplus}$ to decrease.

Last but not least, it must also be understood that the amplification level determines the *minimal* dB μ V measurement that the *Sherlog* will consider for a set level. For example, at **A** = **40**, the instrument will display all measurements above 19 dB μ V and will *not* display sounds lower than 19 dB μ V.

The table below indicates the correlation between the different amplification levels, the gain and the correspondent minimal sound level in dBuV.

Α	10	20	30	40	50	60	70	80
Gain	3	10	30	100	300	1 000	3 000	10 000
Min (1)	49	39	29	19	9	-0.6	-4.1	-7

For the above mentioned reasons, one now understand why when measuring an Open Hatch Value (OHV), the *Sherlog* detects an important ultrasonic output volume generated by the multi-transmitter, which requires an adjustment of the optimal amplification level.

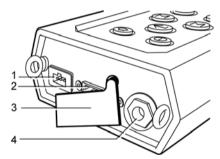

But when one is seeking for minor to very small leaks, the amplification level *must* be set at minimal 70 or 80.

The scale here above shows that at those A levels, the *Sherlog* will display values of minimal -4.1 (or -7) dBµV. No leak can then remain undetected.

Presentation

The bargraphe

Situated on the lower side of the display, it graphically illustrates the amplitude of the detected signal. While measuring, an indicator line shows the peak value measured. Every two seconds, the peak and hold indicator is reset.



The bargraph and its peak and hold indicator.

132

4.6 THE BOTTOM PLATE VIEW

This figure represents the location of the connectors at the bottom plate.

- 1. Battery charger connector.
- 2. RS232C connector.

- 3. Protective cap.
- 4. Headphones set connector.

The rear connectors. 203

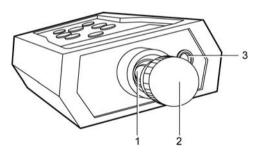
4.6.1 The battery charger connector

This 3-pin connector is used to make the connection with the battery charger provided with the *Sherlog*. Due to the active interaction between the charger and the battery/equipment, only this charger can be used to charge the batteries.

Connecting another charger may cause serious damage to the equipment and void the warranty.

4.6.2 The PC communication connector

The 8 pin plug connects with a PC by means of a RS 232 C type connection. This is used to download measurements to a PC. This port is also used to update new software to the *Sherlog*. The connector is protected against dust and moisture by a rubber protection cap.


4.6.3 The headphones set connector

The supplied headphones set is connected to the *Sherlog* in order to listen to the converted ultrasounds. The Y plug is used to connect a second headphones set.

4.7 THE FRONT VIEW

The internal ultrasonic sensor

The detector has an internal sensor for detecting airborne ultrasounds and other ultrasonic phenomena such as compressed air leaks, vacuum leaks and corona discharge. It is directly connected to the internal components and protected by the sturdy extruded aluminium housing.

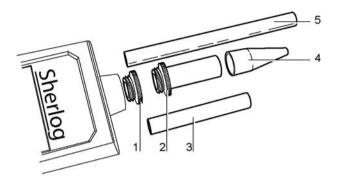
Ultrasonic sensor.

Connector for external sensor.

2. Protection cap.

Elements located on the top of the Sherlog TA.

204


This sensor is not waterproof. Precautions must be taken to protect the sensor from humidity and projections of liquids. For that purpose, the internal sensor is protected by a metal cap, which has to be fitted if the sensor is not in use.

Warning: when using the internal sensor, do not forget to remove the protection cap (rep. 2 – picture here above).

Several extension accessories are supplied with the unit which permits to focus and pin point the ultrasonic source. They are to be connected as follows:

Presentation

- 1. Protection cap to be removed before any 4. Rubber precision cone to be fitted on measurement.
 - items 2, for functionality tests.
- 2. Threaded tip for current leak detection.
- 5. Plastic extension to be fitted on 2.
- Extension to be fitted on 2.

Precision accessories to be mounted on the sensor of the Sherlog.

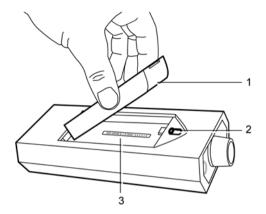
072

The connector for external sensors

It is used to connect the external flexible sensor as well as all other ultrasonic or non ultrasonic sensors. The internal airborne ultrasound sensor is automatically disconnected when an external sensor is connected.

4.8 THE BACK SIDE

It permits the access to the battery pack.

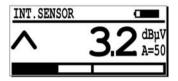

4.8.1 The battery

The battery is a NiMH type (Nickel Metal Hydrate; operating voltage 7.2 V). It is specific to the equipment. Chapter 12 presents the general characteristics of the battery pack as well as how to recharge it.

4.8.2 The serial number of the Sherlog

The serial number of the Sherlog is visible in the battery compartment, on the back side of the unit (rep. 3, illustration hereafter).

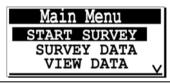
1. Battery pack


- 3. Serial number bar code.
- 2. Locking catch of the battery pack

The battery pack, the battery pack locking catch and the serial number of the detector. 205

5. The Main menu

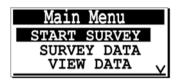
5.1 ACCESS TO THE MAIN MENU


- Switch on the equipment by pressing the key.
- Once the equipment switched on, the self-test is started and takes about two seconds to finish. If no problem or fault is detected during this test, the unit will place itself into the measurement mode.
- Once the basic screen is shown, press to access the Main menu.

Display of the basic screen.

210

• The main screen is displayed as follows.


The main menu.

5.2 THE MAIN MENU SCREEN

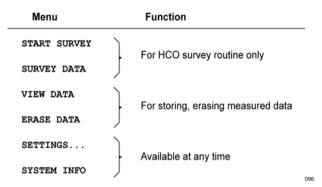
5.2.1 Presentation

When the basic screen is shown, press to access the Main menu.

The main menu. 211

The active keys are:

Key	Function
	Access to the Main menu or return to the previous menu when in a sub-menu.
\bigcirc	Select one of the menu lines by moving the inverted line upwards.
\bigcirc	Select one of the menu lines by moving the inverted line downwards.
\bigcirc	Enter, validates the choice (the inverted line).
\bigcirc	Activates the backlight. This key is available at any time.
	Switch of the equipment. This key is available at any time.


The accessible menus and sub-menus

They differ, according the moment they are called, at the power-up or during a survey.

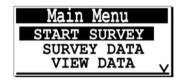
The main menu

With no survey in progress

When not in a hatch cover (HCO) survey routine mode, six menus are available which can be grouped as follows:

The function of each one is:

- 'START SURVEY': enter the survey procedure.
- 'SURVEY DATA': display the measurements logged during an on going survey or a previous survey.
- 'VIEW DATA': display the measurements stored in the data collector point by point.
- 'ERASE DATA': delete measurements stored in the data collector point by point. Available at any time.
- 'SETTINGS...': use this menu to select:
 - 'SENSOR OPTIONS': defines the sensor options. The unit of measurement relative to temperature and frequency range are only available when a contact probe is attached to the equipment.
 - 'CLOCK/DATE': adjust time and date of the internal real time clock.
 - 'CONTRAST': set the LCD display's contrast.
 - 'BACK LIGHT': defines the displays backlighting timer.
 - 'AUTO PWR DWN': defines the auto power down timer.
 - 'ISO/IMPERIAL': defines the type of measurement system.
- 'SYSTEM INFO': display's complementary equipment information on the display: serial number, software version, serial number, type of battery, number of times the battery has been recharged.



6. Start Survey Menu

Permits to start a new hatch cover (HCO) survey. This line is only displayed when no survey in progress.

6.1 Access to the function

Select the Start survey line from the Main menu.

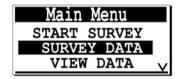
The "Start survey" menu.

211

6.2 USING THE START SURVEY MENU

Menu	Sub menu	Purpose
Main menu		
Start survey menu		To launch the procedure.
	Operator's Name	To select or enter operator's name.
	IMO Ship nº	To enter the ship number.
	Goto H&H	To select hold and hatch to survey
	Hold number	To enter hold number.
	Hatch number	To enter hatch number.
	Survey data	To view at any time the data memorized during the survey.
	Settings	To adjust and modify the Sherlog settings.
	System info	To access at any time the <i>Sherlog</i> system information.

See chapter 23 for the hatch cover tightness survey procedure

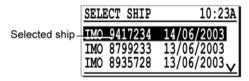


7. Survey data Menu

This screen, accessible at any time even during a survey, allows the visualisation of recorded data for a given ship number and date, during or after a survey session.

7.1 Access to the function

Select the Survey data line from the Main menu.


The "Survey data" menu.

250

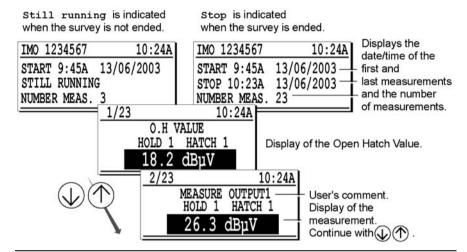
7.2 Using the function

7.2.1 Select ship

Select the ship's IMO number for which the recorded data is required with the \bigcirc or \bigcirc keys.

The selection of a ship in a given list.

238



Warning: when a download of survey data to a PC is completed, the system will automatically erase them in the detectors memory.

7.2.2 Display of information

Once the ship has been selected, the data is displayed.

The various screens in the survey data procedure.

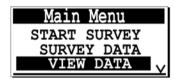
239

The active keys are:

Key	Function
	Return to the previous menu.
\bigcirc	Select previous line or screen (if exists).
\bigcirc	Select next line or screen (if exists).
Θ	Validates the choice.

8. View data Menu

The View data menu permits the user to display the stored memorized data

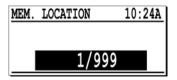

The View data menu is not available during a survey procedure. The stored data are not downloadable to the PC; only those logged during a survey procedure are.

The Sherlog TA can store up to 1,000 locations (each one with 4 measurements) in its internal memory using the (M) key.

8.1 Access to the function

Note: the View data menu is not available during a survey procedure.

Select the View data line from the Main menu.


The "View data" menu.

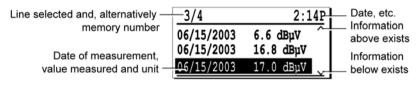
240

8.2 Using the function

8.2.1 Access to the memory number

- To view a stored measurement (see paragraphs 20.4 and 23.3.11), select the memory number by pressing the or key. Keep pressing the key to auto increment/decrement the memory number.
- Validate the selected memory number by pressing the key.

The selection of the memory number.

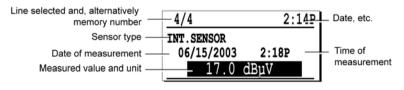

241

8.2.2 Selecting the measurement to display

When no data is stored on the selected memory location, the display shows 'No Measurements'. Press the (key to return to the previous screen.

When at least one measurement has been stored on this memory location, the following type of display will be shown:

Example of display.

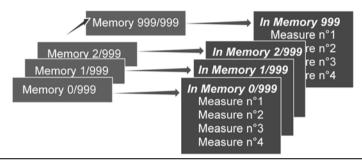

242

The active key's are:

Key	Function
	Return to basic screen (by successive key-presses).
\bigcirc	Move the inverted selection line upwards. The first number is the last measurement made.
\bigcirc	Move the inverted selection line downwards. The last number is the first measurement made.
\bigcirc	"Enter", validates the selected memory number

8.2.3 Viewing the detailed information

The display show detailed information relating to the selected measure. Press to return to the previous menu.



Example of a display shown when detailed information of the measurement is recalled.

8.3 WHAT IS A MEMORY NUMBER

8.3.1 Definition

A memory number is an electronic page, where data from any of the sensors is stored. A maximum of 1,000 independent storage locations, numbered from 0 to 999 are available. For each storage location the *Sherlog TA* stores the data (measured value, unit, type of sensor used, time and date) of the last four measurements made. The memory works on the theory of first in first out (FIFO), so the fifth oldest measurement is automatically deleted.

The Sherlog TA contains 1,000 memory locations. And each memory location can store up to 4 data.

8.3.2 Usage

A memory number is generally attached to a physical location. For example, 'Waste water return pump' could define memory location one.

For each memory location (the physical location in reality), the user defines the type of sensor to be used. For example, the ultrasonic sound level on the front pump bearing, the pumps rotation speed and temperature is to be measured.

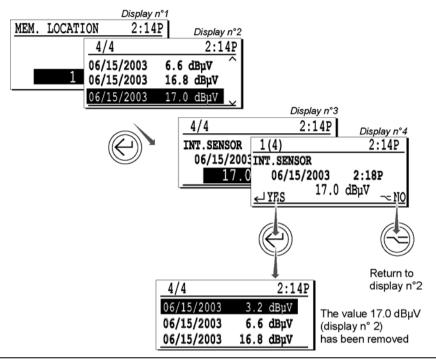
For each memory location (measurement point) a 12 characters label can be defined and uploaded from a personal computer in the *Sherlog TA*'s memory.

In this example, on memory location number 2, four measurement type have been stored (T° , dB μ V, RPM and dBA).

9. Erase Data Menu

When no survey in progress, this function permits to delete measurements previously stored in a given memory location. Only one measurement can be deleted at a time; simultaneous deletion of multiple measurements is not possible.

9.1 Access to the function


- The equipment switched on, press the key to display the Main menu.
- Select the line ERASE DATA and press (—).

9.2 Using the function

This erase the designed data stored in the designed memory. Proceed as follows:

- Select the Memory location to display using the or weekeys. Hold the key to rapidly increment/decrement the memory number.
- Validate the selection by pressing the key. The screen of memorized data is displayed. When no data is stored on the selected memory location, the display responds with no measurements; in this case, press again the key to return to the previous display.
- Press again the key to display the complementary information before deleting.
- To erase the data, press:
 - Yes to erase the data. The measurement is erased and the previous screen is displayed.
 - No to quit the screen without erasing the data and return to the previous screen.
- Return to the previous screen and Main menu by pressing the key.

The various screens displayed when erasing a data.

10. Settings Menu

This menu allows the configuration setting of the detector, such as date and internal clock, contrast of the display, duration of the backlighting, delay of the auto power down, etc.

10.1 Access to the function

Select the **settings** line from the **Main menu**. The menu is displayed as per the figure.

The "Settings" menu.

220

10.2 THE ENTRIES OF THE SETTINGS MENU

The sub-menus are as follows:

- Sensor options.
- Clock/Date.
- Contrast.
- Back light.
- Auto power down.
- Iso/Imperial.

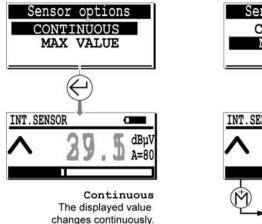
They are displayed, by using the for keys. Each of them, entered by pressing the key h, is fully described below.

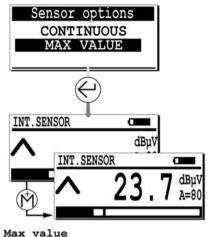
10.3 SENSOR OPTIONS

This function is displayed or not, according to the type of sensor connected. The sensors allowing a configuration through the **Sensor options** menu are:

- Internal ultrasonic sensor.
- External sensors :
 - Flexible sensor (dBµV).
 - Ultrasonic parabolic sensor (dBµV).
 - Contact probe (dBµV).
 - Sound level meter (dBA).
 - Non-contact infrared temperature sensor (°C, °F, °K, °R).
 - Thermocouple interface (°C, °F, °K, °R).

As far as the use of these sensors is concerned, please refer to the part *Sensors* and options.


10.3.1 Internal and all other airborne US sensors


The screen displays:

- Continuous: the bar graph and the display show a measure which varies continuously, according to the signal measured.
- Max value: the bar graph shows the instant level which varies continuously but the display shows the measure only when the is depressed. If necessary, the maximal measurement can be stored. Only the Max value mode must always be selected for a hatch cover tightness survey.

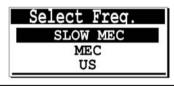
The next picture shows the influence of Continuous or Max value choice.

Settings menu

The maximal value is displayed when pushing (M).

Influence on the display when using "Continuous" or "Max value".

227


10.3.2 Contact probe

This application is only activated and accessible when the contact probe is connected and recognized by the unit. The user can select one out of three operating modes, depending on the application:

• SLOW MEC: Slow mechanical movements (most sensitive).

MEC : Normal mechanical movements.

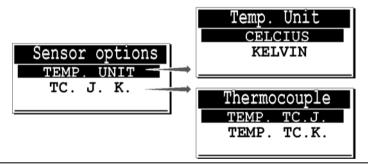
us : Fast mechanical movements.

Example of screen when selecting the measuring frequency band for the contact probe. 228

10.3.3 Sound level meter (dBA)

The following menu is displayed.

The Sensor options menu with a sound level meter.


048

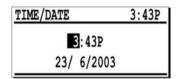
The selection acts as follows:

- slow: slow reaction to sound peaks.
- Fast: fast reaction to sound peaks.

10.3.4 Thermometer (infrared or thermocouple)

The following menu is displayed.

The Sensor options menu with interface pyrometer.


- Temp. Unit: defines the scale used for temperature measurement.
 - This selection is done in combination with the ISO/Imperial selection, see paragraph 10.8.
 - CELCIUS or KELVIN: in the ISO/METRIC system, one of both scales can be used.
 - FAHRENHEIT or RANKINE: in the English Imperial system, one of both scales can be used.

Settings menu

- TC J. K: this function defines the type of temperature probe used for temperature measurement.
 - TEMP. TC. J.: -40 °C to +750°C.
 - TEMP. TC.K: -40°C to +1500 °C.

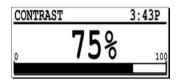
10.4 CLOCK/DATE

This sets the internal clock (date and time). Regularly check that set date and time are correct, particularly if you travel from one time zone to another or when you switch to either summer or winter time. The display is as follows:

Display showing the set time and date of the Sherlog internal clock.

221

If you travel, never forget to reset the Sherlog TA clock to the local time.


The active keys are:

Key	Function
\odot	Returns to the Settings Menu, without taking into account eventual changes.
\bigcirc	Increments the inverted field. Hold key for auto increment.
\bigcirc	Decrements the inverted field. Hold key for auto decrement.
(*)	Moves the cursor to the next field to be modified.
Θ	Enters, validates set values and returns to the Settings menu.

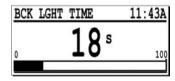
10.5 CONTRAST

This function modifies the screen displays contrast ratio. The display will show a screen similar to the one below:

Screen example when changing the displays contrast ratio.

222

A contrast ratio of 75 % is ideal in normal conditions


The active keys are:

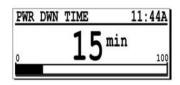
Key	Function	
	Returns to the Settings menu, without taking into account eventual changes.	
\bigcirc	Increases the contrast ratio. Hold key for auto increment.	
\bigcirc	Decreases the contrast ratio. Hold key for auto decrement.	
\bigcirc	Enters, validates the adjusted contrast ratio, and returns to the Settings menu.	

10.6 BACKLIGHT

This function adjusts the time before the instrument switches off the backlight. It is an energy saver for the battery.

The range of the timer is adjustable between 1 and 100 seconds.

Example of a setting of the backlight timer.


Settings menu

The active keys are:

Key	Function
\odot	Returns to the settings menu, without taking into account eventual changes.
\bigcirc	Increases the backlighting timer. Hold key for auto increment.
\bigcirc	Decreases the backlighting timer. Hold key for auto decrement.
\bigcirc	Enters, validates the adjusted backlighting timer's value, and returns to the settings menu.

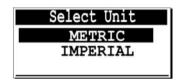
10.7 AUTO PWR DWN

This function sets the time for the instrument to switch off power automatically to save the battery power. This function is activated when the instrument is not in use and that no key is hit during the pre-programmed time. The timer is adjustable between 1 and 100 minutes.

Example of a setting of the auto power down timer.

224

The active keys are:


Key	Function
	Returns to the settings menu, without taking into account eventual changes.
\bigcirc	Increases the auto power down timer. Hold key for auto increment.
\bigcirc	Decreases the auto power down timer. Hold key for auto decrement.
\bigcirc	Enters, validates the adjusted auto power down timer's value, and returns to the Settings menu.

10.8 ISO/IMPERIAL...

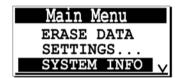
Defines the unit system that is used for the measurements:

- METRIC: the measurements will be displayed in the ISO (METRIC) system.
 The mass flow sensor will read in SCCM (Standard Cubic Centimetre per Minute). Temperatures will read in degrees Celsius or in degrees Kelvin depending on the setting.
- **IMPERIAL**: the measurements will display the English imperial measurement system. The mass flow sensor will read in SCFM (Standard Cubic Foot Minute). Temperature will read in degrees Fahrenheit or in degrees Rankine depending upon the setting.

Screen to select the measurement unit system.

225

The active keys are:


Key	Function
	Returns to the settings menu, without taking into account eventual changes.
\bigcirc	Moves up the inverted measurement system selector.
\bigcirc	Moves down the inverted measurement system selector.
Θ	Enters, validates the measurement system, and returns to the settings menu.

11. System Info Menu

This function gives information about the instrument in a sequence of four consecutive screens.

11.1 Access to the function

Select the System info line from the Main menu.

The "System info" menu.

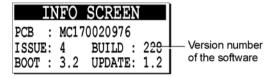
251

11.2 THE SCREENS

11.2.1 Screen 1/5

It consists of information relative to the:

- Type of equipment. (TA: Type Approved, S: Standard).
- Serial number of the Sherlog detector.
- Software version of the instrument.
- Copyright message.



The first screen 1/5.

11.2.2 Screen 2/5 (electronic information)

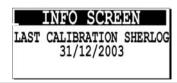
Starting from the previous display, press the \bigcirc key. The display shows information relative to the internal electronics and system software. This information is only useful to a service engineer for detailed identification.

Example of the complementary information of the screen 2/5.

235

11.2.3 Screen 3/5 (battery information)

From the previous display, press the \bigcirc key. The display shows information relative to the serial number, the type of battery, the amount of capacity left in the battery pack, as well as the number of battery recharge cycles done.



Example of the complementary information of the screen 3/5.

236

11.2.4 Screen 4/5 (last calibration date)

From the previous display, press the \bigcirc key. The display shows the last calibration date (format DD/MM/YYYY). Press again to return to the basic screen.

Example of the complementary information of the screen 4/5.

11.2.5 Screen 5/5 (connected sensor)

Starting from the previous display, press the explanation key. The display shows the type of the connected sensor, as well as its serial number.

INFO SCREEN SENSOR: FLOW

SER.NUM: 034023554 TYPE:-75/+1000SCCM

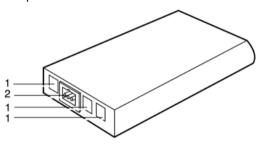
Example of the complementary information of the screen 5/5.

027E

After this fifth screen, the measurement screen is displayed.

For all the screens, the active keys are \bigcirc or \bigcirc .

12. The battery pack and the charger


12.1 THE BATTERY PACK

The battery packs are charged in the factory for test purpose, but are discharged before being dispatched, because of international air transport regulations. At reception, the battery packs should be reloaded during at least five hours. Optimal functioning will be obtained after several (3 minimum) full reloads.

12.1.1 General

The battery pack is represented as follows.

- Battery contact pads. Do not short circuit.
- 2. Battery charger connector.

Contacts and connector of the battery pack.

052

12.1.2 Recommendations

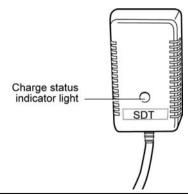
- Never short-circuit the contact pads, nor use with inverted polarity, nor
 incinerate or disassemble the battery pack or the battery cells. The
 components used in the battery are corrosive and may be dangerous for skin
 and eyes. In case of any harm, contact a doctor as soon as possible.
- Always drain the battery before recharging to maximize the number of cycles, charge the battery pack completely and store the battery pack charged in a cool dry place.
- After a long period without use, it is advised to charge/discharge again the battery 3 times to regain optimal battery capacity.
- Contains NiMH type batteries (Nickel Metal Hydrate, operating voltage 7.2 V).
 Short circuit of the battery pack's connections can be dangerous.

- Must not be thrown into a flame or fire.
- Must be protected from any mechanical shock that can lead to a rupture of the battery pack's outer casing that can compromise the life of the batteries.
- Must be recharged when not used for more than 3 weeks.

12.2 THE BATTERY CHARGER

Do not recharge the battery on board of a ship (240 / 60 Hz) if your battery charger is a 110 V AC / 60 Hz model (North America mainly).

12.2.1 **General**


The mains supply voltage depends on the model used (110 or 220 VAC). The output voltage of the battery charger can be either 7.2V or 9V depending on its operating mode (charger connected directly to the battery pack, or charger connected to the *Sherlog TA*, the unit being switched on or off). The maximum output current is about 500 mA.

The charger **must be unplugged** from the mains before recharging a new battery, in order to reset the charger internal timer.

While charging the battery pack the following criteria are permanently monitored:

- 1. The battery cannot be overcharged, end of battery charging cycle detection by means of the ΔU method.
- End of the battery charging cycle detection by means of excessive change in the battery pack's temperature.
- Detection of temperature overload.
- 4. End of charging cycle by means of timeout timer.

View of the battery charger and its charge status indicator light.

12.2.2 The status indicator light

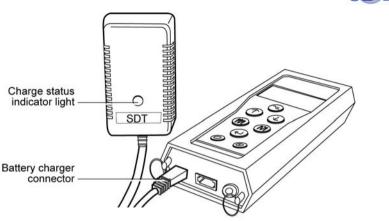
When the battery charger is connected to the power supply, it informs the user of its charging status by means of the status light, as follows:

Status of the light	Meaning
No light	Battery charged.
Green / Fix	Slow charging mode (12 to 14 hours). Power supply to the <i>Sherlog TA</i> unit.
Green / Flashing	Fast charging (5 to 6 hours), only with direct connection to the battery pack.
Red / Fix	Problem with charging.

12.2.3 Recommendations

- Contains no user serviceable parts and must not be opened by the user.
- Must not be subjected to water or used in humid environments.
- Always keep and use the battery charger in a dry indoor place.
- Never short-circuit the pins of the charger connector, nor use a battery charger to charge the battery pack, other than the one supplied with your kit.
- The charging of the battery pack must always be done in a cool place, for example, room temperature (out of the sun or away from any heating system).

12.3 RECHARGING THE BATTERY PACK


12.3.1 Recharging the battery in the instrument

The battery pack can be charged while still in the unit. Charging will be done transparently to the operation of the unit. The advantage is the possibility to charge the battery pack while the unit is in use. The disadvantage is that the charging time is longer when the equipment is switched on (due to power consumption restrictions of the charger).

Never use this method (charger connected to the mains and detector) in a hazardous area.

The connection of the charger to the unit.

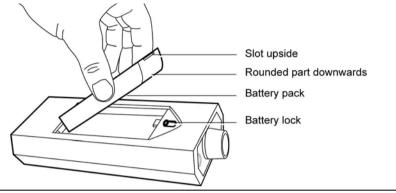
052

Operation

- Unplug the charger from the mains before recharging a new battery, in order to reset the internal timer.
- 2. Connect the charger connector to the unit and plug the charger into the mains power socket.

The charging will be done in about 5 to 6 hours when the unit is switched off, or 12 to 14 hours when the equipment is in use.

3. The charging is completed when the charger light goes out.

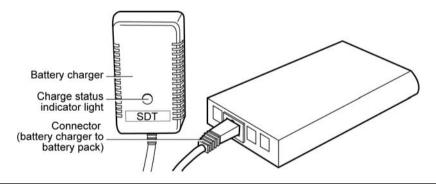

12.3.2 Recharging the battery removed from the instrument

The battery pack can always be charged in fast mode, which is the ideal solution. The *Sherlog* can be used with an optional spare battery while charging the empty one.

Operation

1. Remove the battery pack at the back of the instrument.

Maintain the battery lock in upward position. Place your hand under the battery pack and gently tap the instrument against your hand. The battery pack will then release easily.


Removing of the battery.

053

- 2. Connect battery charger onto the battery pack connector.
- 3. Plug the battery charger in the mains socket.

The charging cycle will take about 5 to 6 hours. Charging is completed when the charger light goes out. Please refer to paragraph 12.2.2 *The status indicator light* for more information on the status light of the battery charger.

4. Once charging is completed, replace the battery pack in the Sherlog.

Connection of the battery charger onto the battery pack.

13. Troubleshooting

13.1 Messages on the LCD display

13.1.1 Battery charge too low

When this message flashes on the screen, immediately change the battery pack and/or recharge the empty pack as previously indicated.

The battery packs are charged in the factory for test purpose but the battery pack is discharged before being dispatched, because of international air transport regulations. At reception, the battery packs should be reloaded during at least five hours. Optimal functioning will be obtained after several (3 minimum) full reloads.

A battery will not be charged if the charger is not unplugged **from the mains** between two charges preventing the internal timer to reset.

It is advisable to reload a battery that remained unused for more than 3 weeks.

13.1.2 Other messages

These appear when a serious internal error occurs. In most cases this is due by an electronic failure of the unit. The user must return the equipment to the distributor for repair. There are no internal parts on the *Sherlog TA*, that are serviceable by the end user. Only qualified technicians should attempt repairs.

13.2 ULTRASONIC SENSOR

The ultrasonic internal or external sensor may be defective following:

- In case of mechanical shock, return the equipment to your distributor for replacement of the sensor;
- In case of water ingress inside the sensor, leave it to dry and check and start again.
- In case of ingress of dust, small debris or grease, gently try to remove it with a clean dry cloth or a pencil.

In all cases the reception of ultrasonic signals will be either interrupted or significantly impaired.

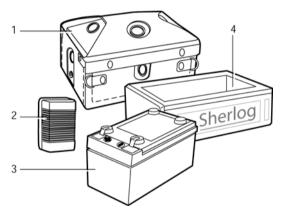
14. Sherlog TA quick reference guide

To store a measurement in memory		
Press	Result	
(*)	To display the measured value.	
	To display the choice of memory locations.	
or \bigcirc	To select the memory location for data storage.	
	To store the measured value in the selected memory location, together with type of sensor, date and time.	
Or O	To return to basic screen.	

Press	Result
\bigcirc	To select the VIEW DATA menu
\bigcirc	To display the choice of memory locations
\bigcirc or \bigcirc	To select the memory location for data storage
Θ	To display the last (maximum 4) stored data
or 🕠	To select the requested stored data
\bigcirc	To view the stored measurement.
or 🕞	To return to basic screen.

To view a stored measurement

The SDT 8 Sherlog multi-transmitter multisetting



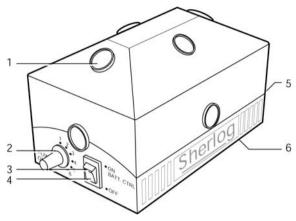
15. Description

This section is directed to anyone who needs to use an ultrasonic transmitter for tightness inspections (e.g. hatch covers, water tight doors, ramp covers, windows, bulkheads, etc). The *SDT 8 Sherlog* multi-transmitter is to be operated in combination with the *Sherlog* detector. This section contains information on how to operate the equipment, possible faults and characteristics.

15.1 PACKAGE

The SDT 8 Sherlog multi-transmitter and its related components are included in the Sherlog TA kit:

- Multi-transmitter multisetting, a leather bag and a shoulder strap
- 2. 220 V 0.3 Ah charger


- Two sealed lead-acid gel 12V 1.2 Ah batteries
- 4. Adapter for battery charging and screwdriver (not shown).

The multi-transmitter with its main dedicated components

15.2 PRESENTATION

The box-shaped multi -transmitter ($160 \times 100 \times 95$ mm) is operated with a sealed lead-acid gel battery and weights 1500 grams. The instrument can be used in temperatures ranging from -20 C to +50 °C.

- 1. Ultrasonic transducer.
- Six position potentiometer
 (1 = minimal ultrasonic power).
- 3. Red light on/off indicator.

General view of the multi-transmitter.

- 4. ON-OFF switch.
- 5. On-Off switch.
- 6. Battery (underneath at the bottom).

The ultrasonic transducers

Eight transducers (1) are laid out in the equipment in such a way that they transmit in the volume of a hemisphere. Each ultrasonic transducer has a power of 125 mW and is frequency and power stabilized. The ultrasonic transmission frequency is 39.2 and 39.6 kHz (bi-sonic mode).

The red light indicator

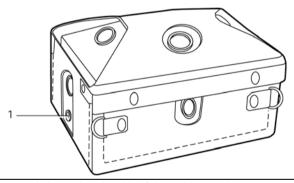
A red light indicator (2), integrated in the On/Off switch, shows whether the equipment is switched on as well as whether the battery is still charged. Refer to paragraph 17.1 *Recharging the battery* for further information.

Sherlog multi-transmitter description

The on-off switch

Located at the base, this switch (3) enables the equipment to be switched on (ON position) or off (OFF position).

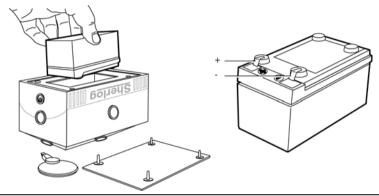
The 6 position potentiometer


It regulates the total output power of the ultrasonic signal; level 1 provides the minimum level and 6 the maximum.

The charge connector

Marked LOAD, the charge connector enables to re-load the internal battery without removing it. Overcharging is not possible when used with the SDT charger provided.

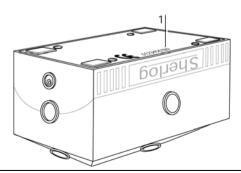
Do not recharge the battery on board of a ship (240 / 60 Hz) if your battery charger is a 110 V AC / 60 Hz model (North America mainly).



The charge connector is located on the side of the multi-transmitter.

The battery

The sealed lead-acid gel type battery is accessible after having removed the bottom protection plate. The rated voltage is 12V and its capacity is 1.2Ah at 20 °C; the autonomy is 2.5 a 3.5 hour for a full charge. The position of the battery in its compartment is of no importance for polarity sake.



The battery is accessible from the bottom and the obligatory arrangement of the battery. 104

Warning: if a battery of a different brand than the one provided by SDT is used, it is essential to respect the polarity arrangement of the terminals as shown in the diagram above. Failing to do so can cause serious damage and impair the good functioning of the multi-transmitter.

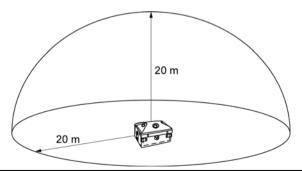
The multi-transmitter serial number

It is located at the bottom, on the removable plate.

Localisation of the serial number of the multi-transmitter.

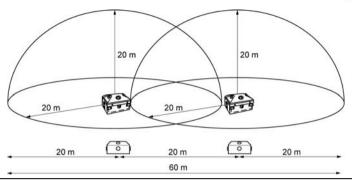
16. Using the multi-transmitter

16.1 RECOMMENDATIONS


The multi-transmitter must be used:

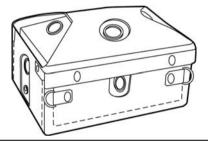
- In combination with a Sherlog detector;
- Outside any classified zone requiring intrinsic and fireproof safety.
- Away from discharge of water and must never be immersed. It is important to
 prevent any foreign bodies entering the ultrasonic transducers, such as
 grease, dust, etc.
- Within hygrometric and temperature limits stipulated in the technical characteristics.

16.2 Working Position


When preparing for testing the tightness of hatch covers and determining the OHV (Open Hatch Value), the multi-transmitter should be placed, ideally, in the centre of the tanktop.

The multi-transmitter covers an operational spherical volume of 20 meters (60 ft) around its position. For larger volumes, the multi-transmitter should be moved several times; it is then requested to carry out a new OHV (Open Hatch Value) measurement after each moving.

The volume covered by one multi-transmitter.



The zone covered by the multi-transmitter when set to various points.

112

If the hold is not empty, the multi-transmitter can be placed on top of the cargo.

The correct position of the multi-transmitter.


114

16.3 Powering On

Note: The battery packs are charged in our factory for test purpose but the battery packs are discharged before being dispatched, because of international air transport legislation. At reception, the battery packs should so be charged.

This is done by pushing the switch to the ON position (1). The operating light (2) should be lit. If this is not the case then refer to chapter 18 *The multi-transmitter operational problems*.

Using the Sherlog multi-transmitter

The on-off switch (1) and battery control indicator (2).

107

16.4 SETTING THE EMETTING POWER

When testing the tightness of small volumes, set the selector on the position 1 or 2. Adapt the selector position according to the volume.

For large volumes, the selector should be set on position 6.

16.5 MEASUREMENTS

The 8 transducers of the multi-transmitter work in bi-sonic mode on frequencies stabilized at 39.2 and 39.6 kHz, with total transmission power also stabilized at 8 x 125 mW. The measurements will be carried out by the *Sherlog* detector (see chapter 23 for the use of the equipment).

16.6 Powering Off

Set the switch to the Off position (1). The operating light should switch off.

17. Charging the multi-transmitter battery pack

Do not recharge the battery on board of a ship (240 / 60 Hz) if your battery charger is a 110 V AC / 60 Hz model (North America mainly).

17.1 RECHARGING THE BATTERY

The battery packs are charged in our factory for test purpose but the battery packs are discharged before being dispatched, because of international air transport regulations. At reception, the battery packs should be recharged.

17.1.1 Recommendations

The battery is a sealed lead-acid gel battery. Therefore:

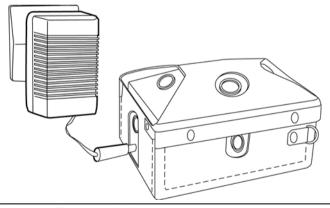
- Short circuit of the contacts is dangerous.
- The battery must not be discarded onto a flame.
- Recharging in a sealed box is prohibited (gas leaks).
- All mechanical shocks able to break the box may adversely affect the life of the battery.
- In the case of electrolyte coming into contact with the skin, rinse the contaminated area immediately with water.
- Recharge an unused battery pack every three (3) weeks.

17.1.2 Generalities on charging

Charging will be carried out:

- Either to maintain the charge of the battery. A continuous charge is not harmful to the life of the battery, as long as the charger provided with the multi-transmitter is used.
- Or after the flashing of the indicator of the battery.

The following table details the state of battery charge in relation to the information provided by the indicator:



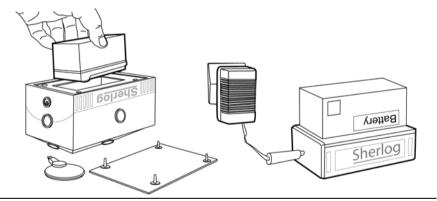
Indicator light	Equipment
On	Equipment switched on.
	Battery charge correct.
Flashing	Equipment switched on.
	Battery charge incorrect.
	The speed of the flashing increases as the charge decreases.
Off	Equipment switched off or, with switch in ON position, indicates insufficient charge.

17.1.3 Without removing the battery

Proceed as follows:

- Before every recharging operation, unplug the battery charger from the mains and replug it, in order to reset the internal timer.
- Connect the plug to the socket marked LOAD on the multi-transmitter.
- Connect the charger to the mains.
- Leave it on charge for 6 hours for a completely flat battery. There is no maximum charge indicator.

Recharging a battery without removing it.


108

Charging the Sherlog multi-transmitter battery pack

17.1.4 When removing the battery

Proceed as follows:

- Remove the lid at the base of the multi-transmitter by means of the screwdriver provided and remove the battery.
- Before every recharging operation, unplug the battery charger from the mains and replug it, in order to reset the internal timer.
- Connect the charger to the mains.
- Connect the plug to the battery's support socket.
- Place the battery in the support, contacts inside. There is no preferential direction for the battery.
- Leave the battery on charge for 6 hours for a completely flat battery. There is no indicator for a maximum charge.
- Batteries should be discharged from time to time to avoid build-up effect.

Removing the battery and connecting to the charger.

109

18. The multi-transmitter operational problems

18.1 ULTRASONIC TRANSDUCER

18.1.1 Decreasing ultrasonic signal

The main reason, when an unstable signal is red on the *Sherlog TA*, is that the battery is not fully charged. Although the discharge curve of the battery is constant on a long period, the voltage decrease suddenly when the initial charge is too low, occurring an unstable signal.

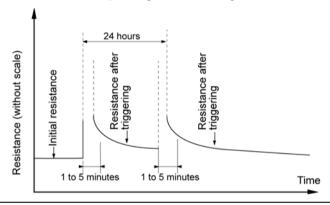
The battery voltage decrease suddenly, giving that way an decreasing ultrasonic signal. 115

18.1.2 Low but constant level ultrasonic signal

If the signal measured from a transducer during the functionality test is significantly lower than 85 dB μ V and however remains constant, this indicates that the functioning of the transducer is impaired by some clogging . In this case, clean the transducer(s).

18.1.3 Defective transducers

One or more sensors may be defective following:


- A mechanical shock: return the equipment to your distributor for a change of one or more transducers.
- Water in the transducers: leave to dry and check that there is no water left, etc.
- Dust, debris and grease.
- In both cases the transmission power is significantly limited or even nonexistent, as the receiver will confirm.

Note: But for large volumes, the failure of one or two transducers will not prevent a correct tightness test. The remaining total output will be sufficient in most cases.

18.2 CONTROL FUSE

Despite an apparently correctly charged battery, the transmitter, in good working order, does not produce any ultrasonic signal. This failure may be due to the triggering of a chemical control fuse located in the internal electronics as well as in the battery support unit. Contrary to a standard type, such a fuse contains a progressive reset time corresponding to the following curve.

Automatic reset curve of the chemical fuse.

110

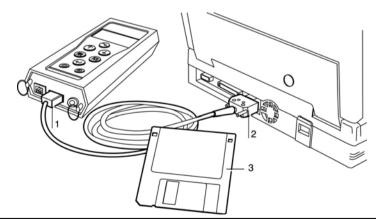
Never replace the chemical fuse with a different type. Successive occurrences of triggering are caused by a failure in the equipment. It is therefore advisable to return the equipment to the distributor for repairs.

The transfer software

19. Using the transfer software

All data logged during a hatch cover tightness test performed following the Class procedure (see chapter 23) can be downloaded to a PC computer for back up and editing purpose as wall as enhanced reporting.

19.1 Installation of the software


Copy the software from the supplied diskette (3 in next figure) to the hard disk. If necessary, add the shortcut in the Start menu.

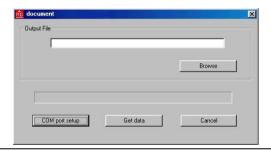
The software icon.

19.2 Connecting the detector

Proceed as follows:

Connection of the detector to the computer.

259



- Connect the first end (phone connector) of serial cable to the detector (1).
- Connected the other end (SUB-D 9 pin female) of the serial cable to the selected serial portof the PC computer (COM1, COM2, etc) (2). Note the port COM used for the next steps.
- 3. Switch on the detector.

19.2.1 Setting of the software

Proceed as follows:


- 1. Launch the software "Survey.exe". The screen displays the main page.
- 2. Select your Output file by browsing (Browse button).
- 3. Give a name or code.

The main page of the downloading software.

260

4. Clic "COM port setup", select the appropriate serial port and clic OK.

The selection of the serial port.

256

Clic "Browse" to select the directory in which the file will be stored, enter the name of the file to be downloaded and clic OK. The file will be a text file.

Note: if no response from the *Sherlog* or if the Com Port is not recognized, the message No response of the SDT 170 appears.

19.3 DOWNLOADING THE DATA

Note: You can only download a file when you have completed a survey (by pressing the "End Survey" key). Otherwise the screen will show a Survey not stopped message.

This routine will empty, in one operation, the memory from ALL the data logged in the "Survey Data" files.

The data and measurements stored in any of the 1000 memory locations remain untouched. These data are not downloadable to a PC and can only be erased manually (see chapter 8, 9, 23.3 and 23.4)

Proceed as follows:

- 1. Switch ON the Sherlog TA detector.
- 2. Clic "Get data".

The Sherlog TA screen indicates Remote. The downloading is effective. If no file has been selected, the message error There is no output file selected will be displayed.

3. If the download was successful, the equipment switches automatically to the measurement screen.

If the message No response of the SDT 170 is displayed, check the connection and the correct selection of the COM port.

 If you now select the Survey data menu, the screen displays No measurement indicating that the memory is empty and the download of the data was successful.

19.4 ERASING THE DATA

It is not possible to manually erase or alter the logged data in the "Survey data" files. As indicated here above they are automatically erased from the *Sherlog's* memory when downloaded to a PC. It is therefore safe to make a backup.

19.4.1 Using the data downloaded

It is to be reminded that downloading the data cannot be executed without the command "End Survey".

The downloaded data are available into an ASCII text file format. They can be imported / loaded in any software that is able to read an ASCII text files (*Notepad*, *MS Word*, *WordPerfect* etc.). For further information, we refer to your text editor software. An example of a printed file is shown in the next figure.


```
Functional test is done.
Ship number IMO 1234567 m/v DUNAI.
Measured with equipment SDT NEI170000602.
Operator Inspector : JdL
Survey started on Thu Feb 28 10:23:18 2003
Survey stopped on Thu Feb 28 12:45:32 2003
        hold 3 hatch 1
                               O.H. VALUE 42.0dBµV A=10 Thu Feb 28 10:25:22 GrC=
                                MEASURE
                                                    26.5dByV A=60 Thu Feb 28 10:29:32 P
18.3dByV A=60 Thu Feb 28 10:32:17 CJ COR SZ
        hold 3 hatch 1
        hold 3 hatch 1 MEASURE 26.5dBuV A=60 Thu Feb 28 10:29:32 P
hold 3 hatch 1 MEASURE 18.3dBuV A=60 Thu Feb 28 10:32:17 CJ
hold 3 hatch 1 DRAIN VALUE -08.1dBuV A=70 Thu Feb 28 10:34:55 FS
        hold 3 hatch 1
                                MEASURE
                                                     19.9dBuV A=70 Thu Feb 28 10:36:29 ACC AS
5
       hold 5 hatch 1 O.H. VALUE 36.1dBµV A=70 Thu Feb 28 11:09:11 GrC=
hold 5 hatch 1 MEASURE 25.4dBµV A=70 Thu Feb 28 11:42:10 CJ 1M
hold 5 hatch 1 MEASURE 14.0dBµV A=70 Thu Feb 28 11:57:42 COR F
                                                    25.4dBuV A=70 Thu Feb 28 11:42:10 CJ 1M F L4.8
14.0dBuV A=70 Thu Feb 28 11:57:42 COR FS
8
        hold 5 hatch 1
                               O.H. VALUE
                                                      37.3dBuV A=70 Thu Feb 28 12:45:32 Value#:open hatch
End survey functional test done
```

Example of the downloaded data logged during a hatch cover survey

261

Using the SDT Sherlog TA for ultrasonic and non-ultrasonic applications

20. Operating procedure

This chapter describes how to use the Sherlog detector for the ultrasonic and non ultrasonic applications.

20.1 PREPARING THE DETECTOR

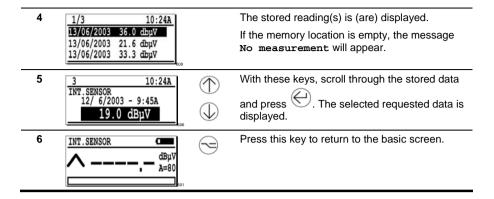
Step	Screen	Key	Action
1	1 205		Unscrew the protective cap (rep. 1) on top of the nozzle of the <i>Sherlog</i> detector.
2		0	Switch on the Sherlog detector
3	INT. SENSOR dBµV A=80		The basic screen is displayed.

20.2 TAKING A MEASUREMENT

Step	Screen	Key	Action
1	Sherlog		Direct the sensor towards the point or area to be controlled.
2	A 42 1 dBpV A=80	(*)	To visualize the signal level, depress the key (**). When the (**) key is released, the <i>Sherlog</i> stops measuring. The display shows the highest value recorded while the key was pressed.
	17,3 dBµV	(*)	To make a new measurement and erase the previous maximum value, just press the key again. If needed, store the measured value. Refer to next paragraph.

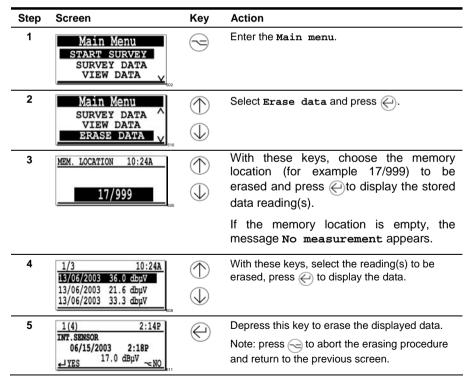
20.3 STORING A MEASURED VALUE

When the measured value is displayed on the screen it is to be stored in the detector's memory, proceed as follows:

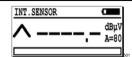

Step	Screen	Key	Action
1	MEM. LOCATION 10:24A 0/999		Press this key to display the memory location menu.
2	MEM. LOCATION 10:24A 17/999	\bigoplus_{\bigcirc}	With the up and down keys, choose the memory location (for example 17/999) to store your data.
3	3 10:24A INT. SENSOR 12/ 6/2003 - 9:45A 19.0 dBµV		Press this key to display the value to be stored in the selected memory location. The type of sensor, date, time and value are also automatically memorized and displayed.
4	INT.SENSOR dByV	\bigcirc	Press this key to store the data which are now stored in memory.
	A=80		The basic screen automatically returns and is ready for a new measurement.

20.4 VIEWING A PREVIOUS STORED VALUE

To view a stored value in the detector memory, proceed as follows:


Step	Screen	Key	Action
1	Main Menu START SURVEY SURVEY DATA VIEW DATA		Select the Main menu.
2	Main Menu START SURVEY SURVEY DATA VIEW DATA	\bigoplus_{\bigcirc}	Choose View data and press (
3	MEM. LOCATION 10:24A 17/999	\bigoplus_{\bigcirc}	With these keys, select the requested memory location (for example 17/999) to be displayed and press —.

Operating procedure


20.5 Erasing a stored value

To erase a stored value in the detector memory, proceed as follows:

6

Press this key until you return to the basic screen.

20.6 Using ultrasonic sensors

20.6.1 Connecting an external sensor

Step	Screen	Key	Action
1	60		Connect the external sensor on to the connector (rep. 1).
	1 305		For the displays, refer to chapter 25 and 28. The following paragraphs only refer to the use of the internal sensor.

20.6.2 Selecting the Continuous or Max value function

Step	Screen	Key	Action
1		(1)	Switch on the Sherlog detector.
2	INT. SENSOR dBµV A=80		The basic screen is displayed.
3	Main Menu START SURVEY SURVEY DATA VIEW DATA	\odot	Depress this key to display the Main menu.
4	Main Menu VIEW DATA ^ ERASE DATA SETTINGS ✓	Θ	With the arrows key, select settings and validate with the return key.
5	Setting Menu SENSOR OPTIONS CLOCK/DATE CONTRAST		With the arrows key, select sensor options and validate with the return key.
6	6 Sensor options CONTINUOUS	Θ	Select Max value Or Continuous and validate with the return key:
	MAX VALUE		- Continuous: the bar graph and the display show a measure which varies continuously, according to the signal measured.
			- Max value : the bar graph shows the

Operating procedure

		instant level which varies continuously but the display shows the measure only when the is depressed. If necessary, the maximal measurement can be stored.
7	INT. SENSOR dBµV A=80	The basic screen is displayed.

20.6.3 Selecting the amplification level

Proceed as follows:

Step	Screen	Key	Action
1	INT. SENSOR dBµV		Check the arrows to optimize the amplification level and use these two these buttons to modify the value A at the bottom of the screen. - When the Sherlog TA receives ultrasonic sounds from a source, set the appropriate amplification (up and down arrows disappear from the screen) - When no ultrasonic signal is present, set the amplification to A = 80.

20.6.4 Measuring with the Continuous function

Proceed as follows:

Step	Screen	Key	Action
1	Shertlog		Direct the sensor towards the point or area to be controlled.
2	INT.SENSOR		Read the signal level on the display.
	29 5 dBµV		The signal changes continuously. Measurement is to be performed while listening with the headphones.

20.6.5 Measuring with the Max value function

Proceed as follows:

Step	Screen	Key	Action
1	Sheriog		Direct the sensor towards the point or area to be controlled.
2			To visualize the signal level depress:
	INT. SENSOR 42 , 1 dBμV A=80	(*)	The maximum (peak value) is displayed for as long as the key is pressed. When the key is released, the <i>Sherlog</i> stops measuring. The display shows the highest value recorded while the key was pressed.
	17,3 dBpV A=80	(4)	To make a new measurement and erase the previous maximum value, just press the key again. If needed, store the measured value. Refer to paragraph 20.3.

20.7 Using Non ultrasonic sensors

Please refer to chapter 28 for the detail relating to each sensor used.

20.8 SWITCHING OFF THE EQUIPMENT

Step	Screen	Key	Action
1		(1)	Press to switch off the Sherlog detector.
		•	The instrument will also automatically switch off after a pre-programmed period. This auto power down timer can be adjusted in the 'Auto power off' menu.

SDT Sherlog TA for an ultrasonic hatch cover tigthness procedure

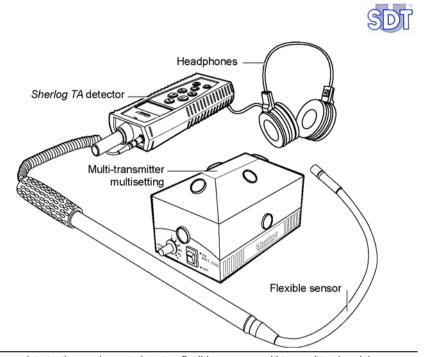
Complies with the DNV Approval Program n°403, survey procedure approved by IACS in July 1997

21. Main questions and answers relating to ultrasonic tests

21.1 WHAT IS AN ULTRASONIC TEST?

An ultrasonic test is aimed at detecting a source of ultrasounds generated either naturally (e.g. air compressed leaks) or by means of an ultrasonic transmitter. It indicates with pin-point accuracy the area of leak (gas or liquid).

21.2 FOR THAT PURPOSE?


Ultrasonic tests allow tightness testing of hatch covers, Ro-Ro bow, stern and inner doors, ramps and ramp covers, water tight doors, bulkheads, windows, tanks, pipes, air compressed systems, etc.

21.3 WHAT EQUIPEMENT TO USE?

The tests are carried out by means of a transmitter (the *Sherlog* Multi-transmitter) that emits ultrasonic waves. In case of leaks, the ultrasounds will pass trough the openings and be detected by a receiver (the *Sherlog* detector). In many case the use of an external flexible sensor will allow to access remote places to inspect.

A Class Type approved equipment such as the Sherlog TA is to be used for statutory surveys.

The ultrasonic tightness tests are to be carried out by trained, skilled and certified operators.

The complete testing equipment: detector, flexible sensor, multi-transmitter, headphones. 264

22. Some reminders

22.1 DEALING WITH THE SHIP'S STAF

22.1.1 Importance of explaining your mission

- Advise the Master about the purpose for your visit and who appointed you.
- Explain the ultrasonic test method.
- Inform the Master that you are a qualified operator (Certificate of Qualification).
- Invite the Master to witness the test.

22.1.2 During the test

- Be flexible and patient.
- · Comment both on good and bad items.
- Advise the Master about the exact position of leaks to allow crew to carry out appropriate corrective action.

22.2 Preparing for survey

22.2.1 Importance of planning

- Time is money.
- Good organization and proper planning will reduce costly idle time, allow optimal use of time available for survey and reinforce the professional perception.

22.2.2 Items to consider when planning a survey

- Loading and discharge operation, size, number of holds and duration of tests.
- Type of ship, number and type of hatches to be tested.
- Time of survey: day, night, during cargo operation (noise level), fatigue (crew, operator).

- Place of survey (alongside, at anchorage heavy rolling shipyard (background noises), etc.
- Persons to be advised of the operator's survey (agents, ship's staff, other surveyors, etc.).
- Equipment required for test (1 or 2 transmitters, a flexible extension, a dual plug for headphones, spare batteries, operator certificates, calibration certificate, Class Type Approval certificates, performance record, camera, chalk, marker, flashlight, yardstick).
- Review of hatch cover history, if records and details are available.
- Hatch cover checklist (for hatch type).
- Laptop computer with Sherlog diskette for transferring test results to the PC).
- Test report (draft form).
- Deficiency list (draft form).
- Consulting hatch patentees if necessary, when unfamiliar with type of hatch covers to be inspected.

22.3 Using ultrasonic testing material

22.3.1 Checks prior to testing

- Ship's draft (hog, sag).
- Ship empty or loaded.
- High or low density cargo on board (deflection of coamings possible with high density cargoes).

22.3.2 Perusal of hatch patentee manual

- Manual should be on board.
- Check details and specific features of the hatch covers to be tested.

22.3.3 Functional testing of the equipment

- Prior to commencement and after test (see paragraph 23.1).
- Signal output of each transducer must be checked (about 90 dB), as well as the Sherlog TA internal sensor, the external flexible sensors and the headphones.

Some reminders

22.3.4 Open hatch value (OHV)

- Place the transmitter down on the tanktop, possibly in central position, or on top of cargo.
- The ultrasonic signal measured with open hatch covers, around the hatch coaming is usually around 40-45 dBµV and is called the OHV (Open Hatch Value).
- If the hatch cover is already closed, measure the OHV in way of access/booby hatch. The measured OHV will probably be less than the OHV measured with an open hatch.
- If the volume is too important (very deep holds) or the hold is very long (more than 25 m) refer to the procedure indicated in chapter 16.2 (Working position).
- Never forget to measure a new OHV every time you change the position of the multi-transmitter in the hold.

22.3.5 Ship's condition

- Leaks are the result from:
- Damages or deficiencies of the hatch covers and/or their sealing arrangements
- Ship's condition.
- About hatch covers, remember that they:
 - Are not parts of the ship's structure.
 - Are a ship's fitting and will not move in unison with the hatchway when it is distorted as a results from stresses.
- Conditions such as hogging, sagging, twisting might adversely affect the
 tightness status because they cause the structure to develop a deformation of
 the ship. This one cannot be compensated for by the resilience of the sealing
 arrangement anymore (e.g. contained feeder vessels that in empty condition
 and equipped with large/heavy pontoons).
- With high density cargoes, the hatch coaming tend to become slightly deformed up to such and extend that leakage might appear.

22.3.6 Resonance of the hatch plating

- Positive reading with the detector above the hatch top plating is the result from resonance of the hatch plating under the influence of the continuous bombing with ultrasounds and not the result of a leak.
- Resonance is generally not found on double skin type hatch cover.
- Resonance mainly occurs in locations just above the transmitter (shortest distance) and when the transmitter is positioned high up in the ship's hold.

22.3.7 Background noises

- Background noises might render detection of small leaks difficult or even impossible.
- Headphones should therefore always be used.
- Most common background noises likely to be experienced during testing are
 motor of hydraulic power packs for hatch covers or cranes, chipping,
 compressed air leaks, welding, rain, gale force winds, shore cranes, etc. If
 the adverse source cannot be eliminated or shielded away, the test might
 have to be temporarily interrupted.

22.3.8 Batteries

- Batteries should be properly charged.
- A spare battery is often useful.

22.3.9 Calibration of the equipment

 Check whether your calibration certificate is still valid. The Sherlog detector must be re-calibrated every two years as required by Class.

22.3.10 Maintenance of the equipment

- Accessories should be maintained as per manufacturer instructions.
- Special attention and care should be given to the flexible extension (check for presence of dirt on the sensor) and possible clogging on the transducers of the multi-transmitter (use gunny bag).

23. The Class required hatch cover ultrasonic tightness survey procedure

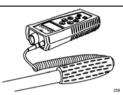
This chapter describes a complete survey procedure.

23.1 CARRYING OUT AN ON-SITE FUNCTIONAL TEST

It is mandatory to proceed to an on-site test in order to check the full functionalities of the measuring chain (multi-transmitter, detector, headphones and external sensor).

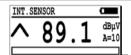
Proceed as follows:

Step	Screen	Key	Action
1	ISHER 108		Unscrew the protective cap and connect the rubber tip on top of the nozzle of the <i>Sherlog</i> detector.
2		0	Switch on the Sherlog detector
3	INT. SENSOR dBµV	\bigcirc	On the <i>Sherlog</i> detector, set amplitude level at 10 (with the down arrow key). This step is very important.
4	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		On the <i>Sherlog</i> multi-transmitter, set the ultrasonic power level switch on position 1 (minimal signal output).
5			On the Sherlog multi-transmitter, place the rubber nozzle in right angle position respectively in the center of each of the eight transducers.
	0 0		


6 INT. SENSOR 4BµV A=10

(4)

Measure individually the ultrasonic emitting output value of all the transducers by depressing the M+ key.


The measured value should be around 90 dB μ V (not lower than 85 dB).

7

Connect the flexible sensor to the *Sherlog* detector.

8

Bring the flexible sensor close to any of the eight transducers and measure the dB μ V value, which should not be lower than 85 dB μ V (depress the M+).

If the signal is lower than 80 dBµV:

- The transducer has a failure
- Possible presence of dust, debris or grease in the transducer.
- The battery is unloaded.

23.2 Positioning the multi-transmitter

The multi-transmitter should be placed according to paragraph 16.2.

23.3 STARTING A SURVEY PROCEDURE

23.3.1 Checking the appropriate settings

See chapter 10.

23.3.2 Choosing the *Max value* function

Step	Screen	Key	Action
1		0	Switch on the Sherlog detector
2	INT.SENSOR dBpV A=80		The basic screen is displayed.
3	Main Menu START SURVEY SURVEY DATA VIEW DATA		Depress this key to display the Main menu.
4	Main Menu VIEW DATA ERASE DATA SETTINGS		With the arrows key, select settings and validate with the return key.
5	Setting Menu SENSOR OPTIONS CLOCK/DATE CONTRAST		With the arrows key, select sensor options and validate with the return key.
6	Sensor options CONTINUOUS MAX VALUE	Θ	Select Max value and validate with the return key.
7	INT. SENSOR dBµV A=80		The basic screen is displayed.

23.3.3 Checking the time and date

Step	Screen	Key	Action
1		(1)	Switch on the Sherlog detector
2	INT. SENSOR dBµV A=80		The basic screen is displayed.
3	Main Menu START SURVEY SURVEY DATA VIEW DATA	9	Depress this key to display the Main menu.
4	Main Menu VIEW DATA ^ ERASE DATA SETTINGS ✓	\bigcirc	With the arrows key, select Settings and validate with the return key.
5	Setting Menu SENSOR OPTIONS CLOCK/DATE CONTRAST		With the arrows key, select Clock/Date and validate with the return key.
6	TIME/DATE 3:43P	Θ	Check and/or set the date and time. A: 00H00 to 12H00 P: 12H00 to 24H00
		\bigcirc	Increase the selected figure.
		\bigcirc	Decrease the selected figure.
		(4)	Moves the cursor to the next position.
		Θ	Validate with the return key and return to the settings menu
7	INT.SENSOR dBµV A=80	9	The basic screen is displayed.

23.3.4 Entering the survey information data

Proceed as follows:

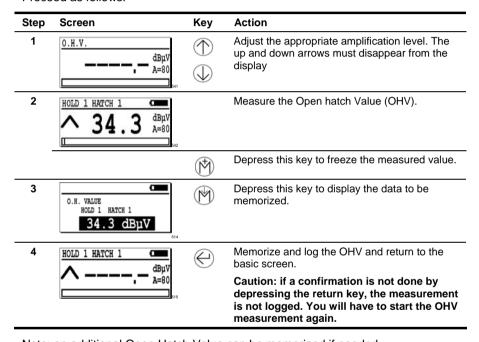
Step	Screen	Key	Action
1		(1)	Switch on the Sherlog detector
2	INT.SENSOR		The screen is displayed.
	dBμV A=80	\odot	Depress this key to display the Main menu.
3	Main Menu START SURVEY SURVEY DATA VIEW DATA	\bigcirc	Select Start survey and depress this key.
4	Operator's Name YOUR NAME ? NEW NAME ?		The Operator's name screen is displayed.
5			If the user has already entered his name, goto to step 6.
			If the user has never entered his name, goto step 7.
6	Select name	\bigcirc	Select your name with the arrow keys.
	John Denis V	\bigcirc	
		Θ	Validate with the return key. Go to step 10.
		\odot	To cancel and start again, go back to step 2.
7	Operator's Name YOUR NAME ? NEW NAME ?	\bigcirc	If you never entered your name, select the line New name? with this key.
8	Name operator		Enter your name as described below. Note: the character file is: ABCDEFGHIJKLMNOPQRSTUVWXYZ012345678 9! " # \$ % ' < > * + - / . : = > ? (space)
		\bigcirc	Select a character by increasing the value (A, B, etc.). The "space" character is before the ${\tt A}$.
		\bigcirc	Select a character by decreasing the value. The "space" character is before the A.

		(4)	Moves the cursor to the right.
			Moves the cursor to the left.
		\bigcirc	Validate with the return key. Go to step 9.
9	Select position Chris John Denis	① ①	Select the line where you want to place your name. Your now new entered name selected can now be recalled (step 6),.
		Θ	Validate with the return key.
10	Ent. IMO ship nb		Enter the IMO ship number as follows:
		\bigcirc	Select a figure by increasing the value (1, 2, etc.).
		\bigcirc	Select a figure by decreasing the value.
		(4)	Moves the cursor to the right position.
		M	Moves the cursor to the left position.
		Θ	Validate with the return key. Go to step 11.
11	Functional test	\bigcirc	Select Yes if an on-site functional test is done.
		\bigcirc	Select No if the test is not done.
		\bigcirc	Validate with the return key.
12	Main Menu GOTO H-H SURVEY DATA END SURVEY		The Survey sub-menu is now displayed.

The hatch cover ultrasonic tightness survey procedure

23.3.5 Selecting a hold and hatch number

Proceed as follows:


Step	Screen	Key	Action
1	Main Menu GOTO H-H SURVEY DATA END SURVEY	\bigcirc	Select Goto H&H and validate with the return key.
		\bigcirc	
	310	\bigcirc	
2	Hold number :	\bigcirc	Select the hold number with the arrows key and validate with the return key.
		\bigcirc	
		\bigcirc	
3	Hatch number : 01	\bigcirc	Select the hatch number with the arrows key and validate with the return key.
		\bigcirc	
		\bigcirc	
4	O.H.V.		The basic screen now requests you to enter the Open Hatch Value (OHV). Go to next
	A=80		paragraph.

23.3.6 Memorizing the Open Hatch Value

Prior to testing the tightness of hatch covers the operator is requested to measure the OHV (Open Hatch Value) respectively of each hold. Therefore the multi-transmitter is to be placed (**switched on**) in the centre of either the tank top or the tweendeck or on top of the cargo of the open uncovered hold. The OHV measurement is then to be made at hatch coaming level pointing down the detector's sensor to the multi-transmitter.

Proceed as follows:

Note: an additional Open Hatch Value can be memorized if needed.

The hatch cover ultrasonic tightness survey procedure

23.3.7 Making a measurement

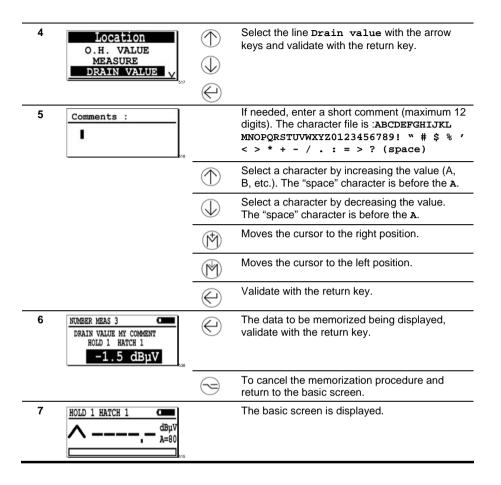
Step	Screen	Key	Action
1	515		Connect the headphones.
2	HOLD 1 HATCH 1	\bigoplus_{\bigcirc}	Set the amplification to A=70 or A=80. Not doing this adjustment may cause to miss small leaks!
3			Place the internal or external sensor close and directed to the seal.
4			Listen to possible ultrasounds with the headphones.
5	HOLD 1 HATCH 1	(*)	Depress the key to freeze the measured value.

23.3.8 Memorizing a leak value

Proceed as follows:

- Direct the flexible sensor to the point to be controlled.
- Measurement is to be performed while listening at headphones signals.
- The bar graph visualises the signal level.

Step	Screen	Key	Action
1	HOLD 1 HATCH 1 dBuV		The basic screen is displayed (the OHV has already been memorized).
	A=80		The "A" level is set o 70 or 80.
2	HOLD 1 HATCH 1 19.1 dBμV A=80	(*)	When you hear a sound, depress this key to freeze the measured value
3	Location O.H. VALUE MEASURE DRAIN VALUE	⊕⊕⊕	Select the line Measure with the arrow keys and validate with the return key.


4	Comments :		If needed, enter a comment. The character file is :ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789! " # \$ % ' < > * + - / . : = > ? (space)
		\bigcirc	Select a character by increasing the value (A, B, etc.). The "space" character is before the A .
		\bigcirc	Select a character by decreasing the value. The "space" character is before the A .
		(**)	Moves the cursor to the right position.
			Moves the cursor to the left position.
		Θ	Validate with the return key.
5	NUMBER MEAS 2 MEASURE MY COMMENT HOLD 1 HATCH 1 19.1 dBµV		If you agree with the displayed data, log them by validating with the return key and return to the basic screen.
6		\odot	If you disagree, cancel the memorization procedure, return to the basic screen.
	HOLD 1 HATCH 1		The basic screen is displayed.

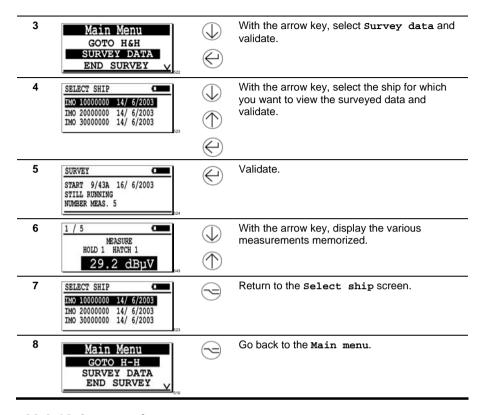
23.3.9 Memorizing a drain value

Proceed as follows:

Step	Screen	Key	Action
1	HOLD 1 HATCH 1 dBµV A=80		The basic screen is displayed (the OHV has already been memorized).
2	HOLD 1 HATCH 1	(*)	Depress this key to freeze the measured value.
3			Depress the key to memorize and log the value.

The hatch cover ultrasonic tightness survey procedure

23.3.10 Changing hold and/or hatch numbers


Step	Screen	Key	Action
1	HOLD 1 HATCH 1	9	From the basic screen, press the key.
1	Main Menu GOTO H-H SURVEY DATA END SURVEY		Select Goto H&H and validate with the return key.
2	Hold number : 01	①	If needed, select the new hold number with the arrows key and validate with the return key.
3	Hatch number : 01	♠♦♦♦	If needed, select the hatch number with the arrows key and validate with the return key. Note: a hatch is composed of one or several panels.
4	0.H.V. dBµV h=80		The basic screen now requests you to enter the Open Hatch Value (OHV). Go to next paragraph.

23.3.11 Viewing logged surveyed data at any time

Proceed as follows to view a memorized value at any time during the survey:

Step	Screen	Key	Action
1	HOLD 1 HATCH 1 dBpV A=80		The basic screen is displayed.
2	Main Menu GOTO H-H SURVEY DATA END SURVEY	\odot	Depress this key to display the Main menu.

The hatch cover ultrasonic tightness survey procedure

23.3.12 Interrupting a survey

It is possible, at any time, to interrupt the survey in progress. Once interrupted, the survey can then be resumed without loosing the memorized data. Proceed as follows:

Step	Screen	Key	Action
1		0	Switch off the <i>Sherlog</i> detector. The current procedure is temporally stopped.
2	HOLD 1 HATCH 1	0	To resume the procedure, switch on the Sherlog detector. When switched on again the Sherlog brings you to the exact position when you interrupted y the survey and no logged data is lost.

23.3.13 Adding a comment

It is possible, at any time **before** ending the survey (**End survey** menu), to add a comment to a measurement witch has been logged without a comment. It is however not possible to modify a previous memorized comment. Proceed as follows:

Step	Screen	Key	Action
1	Main Menu GOTO H&H SURVEY DATA END SURVEY	\odot	Select the survey data menu.
2	ELECT SHIP HMO 10000000 14/ 6/2003 IMO 20000000 14/ 6/2003 IMO 30000000 14/ 6/2003	$\bigoplus \bigoplus \bigoplus$	Select the first line (ship under hatch cover survey) and confirm.
3	NUMBER MEAS 2 MEASURE HOLD 1 HATCH 1 22.2 dBµV	① ① ①	Select the measure without a comment (the word MEASURE is not followed by a comment) and confirm.
4	Comments :		Enter the comment and confirm. See the previous pages as far as the procedure for introducing a comment is concerned.

The hatch cover ultrasonic tightness survey procedure

23.3.14 Ending the survey

Proceed as follows:

Step	Screen	Key	Action
1	HOLD 1 HATCH 1 dBµV A=80		The basic screen being displayed, depress this key to access the Main menu.
2	Main Menu GOTO H&H SURVEY DATA END SURVEY	\bigoplus	Select the End survey line and validate.
3	Functional test done ? No	① ①	Select Yes if a new on-site after survey functional test has been performed. Select No if no NEW functional test was made.
4		\bigcirc	Validate with the return key.
5	Main Menu START SURVEY SURVEY DATA VIEW DATA		The Main menu is displayed again. Sherlog is ready for a new survey.
6		0	Switch off the Sherlog detector.

23.4 TRANSFERRING THE SURVEY DATA TO A COMPUTER

Proceed as follows:

Step	Screen	Key	Action
1	**************************************		Connect the cable between the <i>Sherlog</i> detector and the serial input of the PC.
2		0	Switch on the Sherlog detector.
3	MG Survey.exe		On the PC, launch the application named survey.exe.
4	State		Enter a file name.
5	Poil: COM1 V		Set the COM port to be recognized and the target file.
6	State of Sta		Clic Browse to select the final directory and define a name for the file to be transferred to the computer.
7	States - Manager States - Manager Distriction District		Click on Get data to transfer the data memorised into the detector towards the PC. All the logged data are downloaded to the PC, and are automatically erased from the detector's memory.
8		(1)	Switch off the Sherlog detector.

Note: all data are transferred to the PC. It is not possible to select a given survey. The *Sherlog TA* memory is then empty.

Sensors and options

24. The whole range of sensors

This list shows the whole range of sensors and options available witch can be connected to the *Sherlog TA*.

Internal ultrasonic sensor (*) (1)

External ultrasonic sensors

- Flexible sensors (*)
- Parabolic sensor
- Contact probe
- Magnetic sensor
- Threaded sensor
- Open sensors

Adaptator for ultrasonic sensor

Lube adapter

External non ultrasonic sensors

- Sound level meter
- Tachometer
- Thermocouple interface
- Non-contact temperature sensor
- Mass airflow sensor

Cables for external sensors

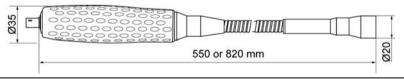
- BNC to LEMO 7 pin cable (*)
- LEMO 5 pin to LEMO 7 pin cable
- (*) included in the Sherlog TA set.
- (1) See chapters 20 and 23 as far as the use of this sensor is concerned.

25. External ultrasonic sensors

It is to be reminded that the detector will recognize the presence of the sensor and will automatically change to the appropriate settings, scales and units.

25.1 FLEXIBLE SENSORS

Three models are available: 550 and 820 mm long with a 20 mm external diameter and the delivered flexible sensor with the *Sherlog* kit: 820 mm long and a 13 mm external diameter.


25.1.1 Main field of application

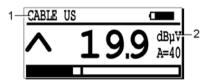
They are:

- Leak detection.
- Tightness testing with an ultrasonic transmitter.
- Control of mechanical units and predictive maintenance.
- Control of the aligning of mechanical coupling.
- Electrical arcing and corona detection.

25.1.2 Description

Each of these sensors is supplied with a BNC type connector and a coiled cable equipped with BNC and 7-pin LEMO connectors. The coiled cable can be stretched to about 2 m (6.6 ft).

View of a flexible sensor.


25.1.3 Technical data

Item	Data
Bandwidth	1,2 kHz at -6 dB
Frequency	40 kHz ± 1 KHz
Sensitivity (40 kHz)	-65 dB/V/µbar
Length	550 mm or 820 mm (without cable)
Diameter	20 mm external 16 mm internal
Cable length	Coiled 0,5 m to 2 m

25.1.4 How to read the displayed data

The LCD display indicates:

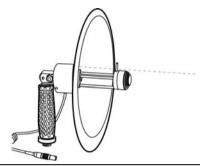
- That a cable for ultrasonic sensor is connected between the sensor and the detector.
- 2. The measured value expressed in dBµV.

The icon with a flexible sensor.

091

25.2 Parabolic sensor

25.2.1 Main field of application


This typical waveform concentrator equipped with a laser pointer is used to detect ultrasonic phenomena, at short or large distances, with a high pin-point accuracy. The main applications are:

- Tightness testing of windows
- Tightness testing of bulkheads
- Tightness testing of RoRo bow, stern and visor doors
- Leak detection in remote air compressed systems,
- Electrical arcing and corona effects detection.

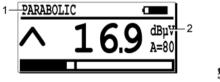
External ultrasonic sensors

25.2.2 Description

This sensor allows is an exceptional highly unidirectional ultrasonic measurement tool that minimizes background noises and detects distant leaks, corona discharges and electrical arcing at remote distances.

View of the parabolic sensor and the laser beam (artist's representation).

074


The dish is transparent to easy visualize the object while measuring. For this same purpose of "pin pointing the object to measure" this parabolic concentrator has two sights: a "rifle-sight-shaped" sight and a very effective laser pointer sight.

In some cases (corona detection) the *Sherlog* is used with the special SDT loudspeaker instead of using the normal headphones.

25.2.3 How to read the displayed data

The LCD display indicates:

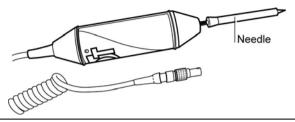
- 1. Parabolic: means that a parabolic sensor is connected.
- 2. The measured value expressed in dBμV.

The specific icon with an ultrasonic parabolic sensor.

25.2.4 Technical data

Item	Data
Function	Ultrasonic transparent parabolic waveform concentrator
Measurement Gain	± 25 dBμV
Transducer type	Air Ultrasonic Ceramic Transducer diameter 16 mm
Measuring range	-10 dBμV to 120 dBμV
Accuracy	± 0.5 dBμV
Measuring resolution	0.1 dBμV
Signal to noise ratio	–5 dBμV typical
Bandwidth (-6 dB)	2 kHz
Central Frequency range	40 kHz ±1 kHz
Laser Power	≤ 2.5 mW activated by push button
Laser Spot size	± 6 mm at 5m
Operating temperature	+10°C to +40°C
Material Parabola	Transparent Plexiglas (polymethacrylate)
Material Handgrip	Aluminum covered with antiskid grip
Weight	Approx. 0.8 kg.
Parabola Max. Ext. Diameter	275mm
Parabola Nominal Diameter	250mm
Parabola length	193,5mm (with handgrip 90°angled)
Fitting	As separate unit or fitted on the Sherlog TA with knurled nut
Handle position	Angle from –90 to + 90 versus pointing direction

25.3 CONTACT PROBE


25.3.1 Main field of application

Use the contact probe for detecting and localizing bearing defects, gear meshes problems, pump cavitations, steam trap failures, valve and reciprocating compressor checks, and lubrication trending of rotating equipment.

25.3.2 Description

When plugged into the sensor input of the *Sherlog TA* the equipment switches to "contact measurement" mode. It is supplied with a spiral cable with its appropriate connector.

External ultrasonic sensors

The contact probe.

064

25.3.3 Technical Data

Item	Data
Bandwidth	1 kHz at -6 dB
Frequency	40 kHz ± 1 kHz
Sensitivity (40 kHz)	-60 db/V/µbar
Length	260 mm (without cable nor needle)
Diameter	36 mm
Cable length	Coiled cable 0.5 m to 2 m

25.3.4 Operating method

To determine the status of the bearing, two operating methods are possible:

- Trending the evolution: periodical measurements are recorded for further analysis with PC software or by consultation of the stored data in the internal memory of the *Sherlog TA*. Any signal increase higher than 10 dBµV needs to be watched.
- By comparison: any significant difference (several dBµV) between the measurements take on the bearings evolving under similar operating conditions is to be watched.

25.3.5 Operating mode

When the contact probe is connected to the *Sherlog TA*, select settings, sensor options, select freq and choose from three operating modes. These modes are pre-programmed frequency bands that are common to the application being tested. There are three different designations:

- SLOW MEC to listen and to measure bearings with a rotation speed lower than 300 RPM
- MEC to listen and to measure the bearings with a rotation speed higher than 300 RPM.

• us to listen and to measure the bearings of turbines and bearings with a speed higher than 10.000 RPM. This mode is also most convenient for finding internal leaks (hydraulic systems, fluids).

The menu with a contact probe.

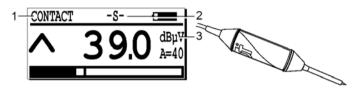
026

The active keys are:

Key	Function
\odot	Return to the parameter menu, without taking in to account eventual changes.
\bigcirc	Move up the inverted contact probe frequency band selector.
\bigcirc	Move down the inverted contact probe frequency band selector.
\bigcirc	Enter, validate the selected contact probe frequency band, and return to the Settings menu.

25.3.6 Rules to respect

In most circumstances, the contact probe is the best sensor to monitor a bearing.


To ensure the repeatability of the measurements taken with the contact probe, it is imperative to follow the next rules.

- Attach the needle correctly and connect the contact probe to the unit.
- Always take a measurement by applying the top of the needle on the same spot (possible marking with the awl to dimple the housing).
- Maintain the contact on the vertical plane (perpendicular) of the measurement point. Any oblique position should be avoided.
- Apply about the same holding pressure on the probe.
- Hold the button down for 3 to 4 seconds until stabilization of the measurement is achieved.
- Make sure that the appropriate functioning mode has been selected (Slow mec, Mec or US).
- Ideally, take the measurement when no arrow is displayed (∧ or ∨).

25.3.7 How to read the displayed data

The LCD display indicates:

- 1. The type of sensor connected (here, a contact probe).
- 2. The selected mode (S, M or US).
- 3. The measured value expressed in dBµV.

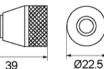
The specific icon with an ultrasonic contact probe.

055

25.4 MAGNETIC SENSOR

25.4.1 Main field of application

Fitted with a magnet, this sensor allows the localization of anomalies and irregularities. The main applications are:


- Control of mechanical units and predictive maintenance.
- Control of bush, motor, pumps, valve, steam trap, condensate purge.

25.4.2 Description

The sensor is supplied with a spiral cable, equipped with the appropriate connectors on both sides.

View of the magnetic sensor.

25.4.3 Technical Data

Item	Data
Bandwidth	2 kHz at -6 dB
Frequency	40 kHz ± 3 kHz
Sensitivity (40 kHz)	-80 dB/V/μbar
Temperature	-20°C to +80°C
Weight	35 g
Diameter	22,5 mm
Cable length	Coiled 0,5 m to 2 m
Tractive power	4 kg

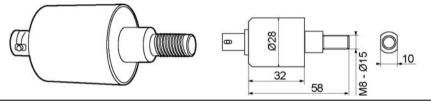
25.4.4 How to read the displayed data

The LCD indicates:

- Cable US: a cable for ultrasonic sensor is connected between the sensor and the detector.
- 2. The measured value expressed in $dB\mu V$.

The icon with an ultrasonic external magnetic sensor.

25.5 THREADED SENSOR


25.5.1 Main field of application

They are:

- Permanent control of mechanical units and predictive maintenance.
- Control of bush, motor, pumps, valve, steam trap, condensate purge.

25.5.2 Description

The sensor is equipped with a thread (M8) and a NBC connector.

View of the threaded sensor.

044

25.5.3 Technical Data

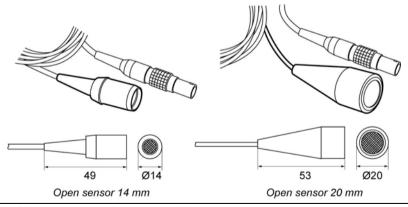
Item	Data
Bandwidth	2 kHz at -6 dB
Frequency	40 kHz ± 3 kHz
Sensitivity (40 kHz)	-73dB/V/µbar
Temperature	-20°C to +150°C
Weight	90 g
Diameter	28 mm
Cable length	Coiled 0,5 m to 2 m
Thread	M8 x 15

25.5.4 How to read the displayed data

The LCD display indicates:

- Cable US: a cable for ultrasonic sensor is connected between the sensor and the detector.
- 2. The measured value expressed in dBµV.

The icon with an ultrasonic external threaded sensor.


093

25.6 OPEN SENSORS

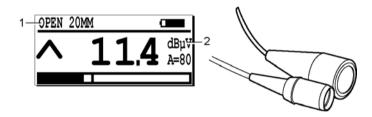
Open sensor is a non waterproof sensor. Two models are available: diameter 14 and 20 mm.

25.6.1 Description

Each of these sensors is supplied with a 2.5 m $\!\!\!/$ 8.2 ft cable, equipped with a 7 pin LEMO connector.

View of the open sensors diameter 14 and 20 mm.

External ultrasonic sensors


25.6.2 Technical data

Item	Data
Bandwidth	3 kHz at -6 dB
Frequency	40 kHz ± 1 kHz
Sensitivity (40 kHz)	-70 dB/V/μbar (14 mm) and -65 dB/V/μbar (20 mm)
Length	50 mm (without cable)
Diameter	14 mm or 20 mm external
Cable length	2,5 m

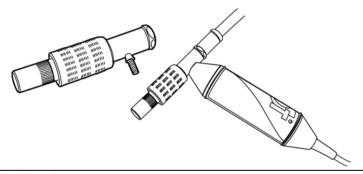
25.6.3 How to read the displayed data

The LCD display indicates:

- 1. The type of sensor connected. The information depends of the sensor: open sensor 14 mm, open sensor 20 mm.
- 2. The measured value expressed in dBµV.

The specific icon with an ultrasonic external open sensor.

26. Adaptator for ultrasonic sensors


26.1 LUBE ADAPTER

26.1.1 Main field of application

- Adaptator for greasing control of mechanical unities and predictive maintenance.
- Listening to bearing, bush.

26.1.2 Description

Connected to the contact probe and fixed on the top of the pump flexible to grease, this adapter allows controlling the efficiency level of greasing in real time.

View of the lube adapter.

27. Ultrasonic transmitters

27.1 SDT 200 mW TRANSMITTER

27.1.1 Main field of application

It is the tightness control of small volumes which cannot be pressurized or depressurized.

27.1.2 Description

This is a small portable ultrasonic transmitter, equipped with one transducer and an internal rechargeable Ni-Cd battery. The transmitter is available in directional and bi-sonic modes. The user can select between two power positions.

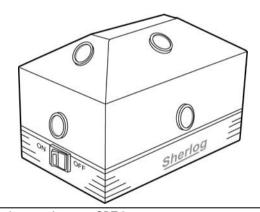
View of the ultrasonic transmitter type SDT 200 mW.

071

Its main characteristics are as follows:

Item	Data
Transmitter frequency	Bisonic: 39.2 and 39.6 kHz
Transmitter power	200 mW
Transmitter angle	60 °
Internal battery	9.6 V, 110 mAh Ni-Cd
Autonomy	±4 hours
Dimensions	108 x 35 x 40 mm (4.25 x 1.37 x 1.57 inches) L x W x H)
Weight	230 g (8.11 oz)

27.2 SDT 8 (8 x 125 mW) MULTI-TRANSMITTER


This equipment is delivered in the Sherlog S set.

27.2.1 Main field of application

It is the tightness control of large volumes which cannot be pressurized or depressurized, without control of the emitting ultrasonic power.

27.2.2 Description

This is a small portable fixed power multihead ultrasonic transmitter. Eight (8) oriented ultrasonic transducers are localized all around the unit, for a 8 x 125 mW ultrasonic power. The *SDT 8* uses the bi-sonic mode and is equipped with a removable rechargeable lead-acid gel battery pack.

View of the ultrasonic transmitter type SDT 8.

061

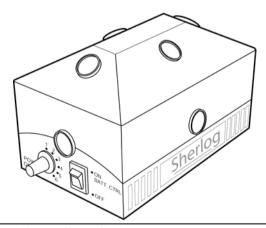
Its main characteristics are as follows:

Item	Data
Transmitter frequency	Bisonic: 39.2 and 39.6 kHz
Transmitter power	8 x 125 mW
Transmitter angle	240 °
Internal battery	12 V, 1.2 Ah sealed lead-acid gel battery
Autonomy	2.5 hours
Dimensions	160 x 100 x 95 mm (6.29 x 4 x 3.75 inches) L x W x H)
Weight	1.5 kg (3.3 lb)
Operating temp.	-10 to +50 °C (14 to 122 °F)

27.3 SDT 8 (8 x 125 mW) MULTI-TRANSMITTER MULTISETTING

This equipment is delivered in the Sherlog TA set.

27.3.1 Main field of application


It is used in situations where the emitted ultrasonic power must be adjustable to the volume that has to be controlled, mainly in the tightness control of large volume which cannot be pressurized or depressurized.

27.3.2 Description

This six position ultrasonic transmitter used in combination with an *Sherlog* detector. Eight (8) oriented ultrasonic transducers are localized all around the unit, for a variable 8 x 125 mW ultrasonic power.

A six position selector allows the choice of the ultrasonic power.

This combination is an accurate and reliable tool for testing the tightness of every kind of object or volume.

View of the SDT 8 multi-transmitter multisetting.

Its main characteristics are given on Chapter 31.

28. External non ultrasonic sensors

It is to be reminded that the detector will sense the presence of the sensor and will automatically change to the appropriate settings, scales and measurement units.

Measurements can be time-dated and logged inside the memory of the Sherlog TA.

28.1 SOUND LEVEL METER

28.1.1 Main applications

Designed for the sound measure (dBA), this equipment allows the measure of the ambient noise and the determination of the level of the hearing protection (safety, ergonomics).

28.1.2 Description

Its main characteristics are as follows:

Item	Data
Function	Sound (pressure) level meter
Measuring ranges	45 to + 130 dBA
Precision	± 2 dB at full scale
Resolution	0.1 dB over the whole range
Type of filter	'A' weighted, compliant with IEC 651A
Measuring unit	dBA

External view of the sound level meter and its wind bonnet.

28.1.3 How to configure the display

Proceed as follows:

- From the basic menu, push the \infty key.
- Select Settings... and Sensor options and push (
- The screen displays:

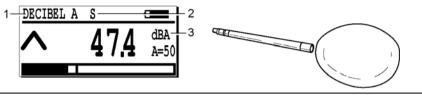
The Sensor options menu with sound pressure measurement microphone.

048

The selection acts as follows:

- slow: slow reaction to sound peaks.
- Fast: fast reaction to sound peaks.

The active keys are:


Key	Function
	Return to the parameter menu, without taking into account eventual changes.
\bigcirc	Move up to the <i>Slow</i> mode.
\bigcirc	Move down to the Fast mode.
\bigcirc	Enter, validate choice and return to the measurement display.

28.1.4 How to read the displayed data

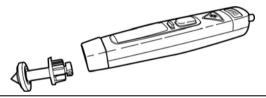
The LCD display indicates:

- 1. Decibel A: measure of the dBA.
- 2. s or F: Indicates the selected mode (Slow or Fast).
- 3. The measured value expressed in dBA.

External non ultrasonic sensors

The specific icon with a sound level meter.

049


28.2 TACHOMETER

28.2.1 Main applications

All linear or rotation measurements with or without contact of a mechanical or electrical system, mainly for the control of mechanical units and predictive maintenance.

28.2.2 Description

The SDT laser tachometer can be used separately as an individual unit or in combination with the *Sherlog TA*.

External view of the tachometer.

070

The SDT tachometer is an extremely versatile fully featured sensor, with a wide selection of practical functions including revolutions per minute (rpm) and revolutions per second (rps) both optically with a laser pointer and by contact method, contact linear speeds, in feet, yards or meters per minute and per second.

Special memory functions include maximum, minimum reading capture, employing a unique dual time base for high speed data grabbing. Truly average speed measurement mode is also standard, with time interval measurement for reciprocal speeds and cycle timing, other features include revolution count and length count in meters, yards or feet, with last reading hold and auto-memory retention of last selection function mode.

28.2.3 Technical data

Display tachometer

Item	Data
Display tacho	Inverting LCD vertical 5 digit display
Display functions tacho	180° inverting
On target indicator	Yes, on LCD
Low battery indicator	Yes, on LCD
Function icons	Comprehensive selection of ranges shown in display

Controls - 3 push buttons

Item	Data
On/Off normal mode	Dual action rocker type touch button (UP ARROW)
On/Off inverted mode	As above but for inverted operation (DOWN ARROW)
Program control	Selects program mode in conjunction with up/down switches

Optical system

Item	Data
Optical range	50mm - 2000mm
Minimum optical angle	+/- 45° incidence against the reflecting zone
Light source	Red Spot Laser Class II

Measurement range

Item	Data
Measurement modes	rpm & rps optically (also count & time)rpm & rps, meters, yards, feet, per min.& sec. Via contact adaptor count total revs, meters, feet, yards, measure time interval in seconds between pulses (reciprocal rate)speed capture feature - max, min, or average rate

Speed range

Item	Data
Optical mode	3 - 99.999 rpm (or equivalent in rps)
Contact mode	Max 50.000 rpm for 10 sec. (or equivalent in rps)
Linear speeds maximum	0.3 - 1500 meters/min (or equivalents)

External non ultrasonic sensors

Other

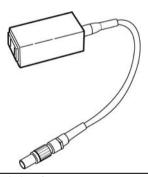
Item	Data	
Resolution range features	Fully auto ranging, up to 0.001 digit or +/- 1 digit fixed	
Accuracy speed modes	0.01% +/- 1 digit	
Count mode	Resolution +/- 0.1 meters (or equivalent in all ranges)	
Time interval mode	0 - 99999 seconds autoranging only (max. 0.001 resolution)	
Time base standard	0.8 sec. Or time between pulses, whichever is longest	
Time base fast mode	0.1 sec. Auto-selection in max. or min. capture mode	
Memory features	Last reading held for 1 minute, Auto switch off. Program settings retained in memory after power down.	
Contact adapter	Included complete with rpm cone & metric wheel assembly	
Power requirements	4 x AAA alkaline cells	
Operating temp.	0°C to 60°C / 32°F to 140°F	
Operating humidity	0 % to 90 % R.H. when temperature is less than 35°C/95°F	
	0 % to 70 % R.H. when temperature is above 35°C/95°F	

28.2.4 How to read the displayed data

The LCD display indicates:

- 1. RPM: the connection of a rotation sensor
- 2. The measured value expressed in revolutions per minute.

The Sensor options menu with the tachometer.


28.3 THERMOCOUPLE INTERFACE

28.3.1 Use

It is used to check any kind of temperature that can be measured with a thermocouple. Its main applications are for the control of mechanical units and maintenance.

28.3.2 Description

This "Digital Thermocouple Interface" allows any 'J' or 'K'-type thermocouple to be connected via its plug to the *Sherlog TA*. The temperature can be read out in degrees Celsius, Kelvin, Fahrenheit and Rankine. Designed for usage in an industrial environment, the interface is made out of a rugged metal casing, and has a miniature thermocouple connector. The interface has on board digital cold junction compensation and is equipped with a wire brake or thermocouple not present detector.

External view of the thermocouple interface.

045

28.3.3 Technical Data

Thermocouples types:	"J" and "K" (user selectable, not automatic)
Connector	With a standard miniature thermocouple connector, 7.9 mm or 0.312 inch, center to center.
Interface dimensions	108 x 73 x 23 mm / 4.3 x 2.9 x 0.9 inch
Interface weight	106 gram / 0.36 lb
Cable to the Sherlog	Included
Thermocouple	Not included

External non ultrasonic sensors

Accuracy and measuring ranges for 'J' thermocouples *

	Range	Resolution	Accuracy (2)
Celsius	-210 to +1200°C	0.1°C /1°C (1)	0.3 % of lecture bol'± 1.2°C (3)
Kelvin	+63.1 to +1473°K	0.1°K /1°K (1)	0.3 % of lecture bol'± 1.2°K (3)
Fahrenheit	-346.0 to +2192°F	0.1°F/1°F (1)	0.3 % of lecture bol'± 2.16°F (3)
Rankine	+113.6 to +2651°R	0.1°R /1°R (1)	0.3 % of lecture bol'± 2.16°R (3)

⁽¹⁾ the measuring resolution 0.1° up to 999.9° from 1000° onwards resolution is 1°.

Accuracy and measuring ranges for 'K' thermocouples *

	Range	Resolution	Accuracy (2)
Celsius	-200 to +1372°C	0.1°C /1°C (1)	0.3 % of lecture bol'± 1.2°C (***)
Kelvin	+73.1 to +1645°K	0.1°K /1°K (1)	0.3 % of lecture bol'± 1.2°K (***)
Fahrenheit	-328.0 to +2501°F	0.1°F/1°F (1)	0.3 % of lecture bol'± 2.16°F (***)
Rankine	+131.6 to +2961°R	0.1°R /1°R (1)	0.3 % of lecture bol'± 2.16°R (***)

⁽¹⁾ the measuring resolution 0.1° up to 999.9° from 1000° onwards resolution is 1°.

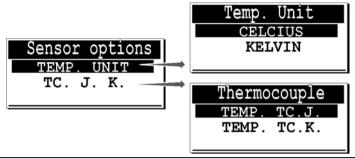
28.3.4 How to configure the display

Proceed as follows:

- From the basic menu, push the \infty key.
- Select Settings... and Sensor options and push (
- The screen displays:

⁽²⁾ with the interface at +18°C to +28°C / 64°F to 82°F.

⁽³⁾ whichever is greater.


^{*:} typical ranges. The measuring ranges depend of the thermocouple used.

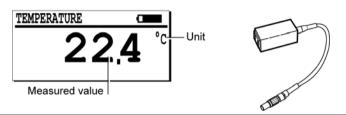
⁽²⁾ with the interface at +18°C to +28°C / 64°F to 82°F.

⁽³⁾ whichever is greater.

typical ranges. The measuring ranges depend of the thermocouple used.

The Sensor options menu with thermocouple interface.

025


- Temp. Unit: defines the measurement system used for temperature measurement. A normal temperature scale or a temperature relative to absolute zero can be used. This selection is done in combination with the ISO/Imperial selection, see paragraph 10.8.
 - CELCIUS or KELVIN: in the ISO/METRIC system, one of both scales can be used.
 - FAHRENHEIT or RANKINE: in the English Imperial system, one of both scales can be used.
- TC J. K: this function defines the type of temperature probe used for temperature measurement.
 - TEMP. TC. J.: -40 °C to +750°C.
 - TEMP. TC.K: -40°C to +1500 °C.

The active keys are:

Key	Function
	Return to the parameter menu, without taking into account eventual changes.
\bigcirc	Move up to the upper selection.
\bigcirc	Move down to lower selection.
Θ	Enter, validate choice and return to the previous menu.

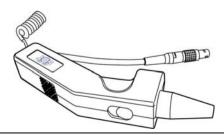
28.3.5 How to read the displayed data

The LCD display indicates:

The Sensor options menu with a thermocouple interface.

056

- The word **TEMPERATURE** indicated that a thermocouple interface is connected.
- The units are °C or °F and °F or °R. The unit depends of the setting made in the Settings menu.
- The thermocouples types are "J" and "K", selectable by the user in the **Settings** menu.
- The data represents the actual temperature applied on the sensor. Open displayed means that the sensing unit is out of order or not connected.


28.4 Non contact infrared temperature sensor

Main applications

This non-contact infrared thermometer allows the temperature measurement in °C, °K, °F, °R without contact, from -18°C up to 260°C. The main applications are the control of mechanical and electrical units as well as the predictive maintenance.

Description

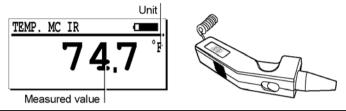
The probe has a temperature range of -18°C to 260°C (0°F to 500°F), with a basic accuracy of 5% of reading and an output of 1 mV DC per °C of °F.

External view of the non-contact infrared temperature sensor.

Pointing the probe at the surface to be measured and reading the temperature on the *Sherlog TA* display is sufficient to measure temperature.

28.4.1 Technical data

Item	Data
Function	Temperature sensor (infrared temperature probe)
Measuring ranges	-18 to 260 °C (0 to 500 °F)
Temp. range	0 to 63 °C (ambient temperature range)
Accuracy	±5% of reading or ±3 °C, whichever is greater @ 18 to 28 °C (64 to 82 °F) ambient operating temperature (accuracy for one year).
Temperature coef.	±0.2 % of reading or ± 0.2 °C (± 0.3 °F) whichever is greater, change in accuracy per °C in ambient operating temperature above 28 °C (82 °F) or below 18 °C (64 °F).
Response time	1 second
Spectral response	8 to 14 microns nominal
Emissivity	Preset 0.95
Output	1 mV / °C or °F
Power	Through the Sherlog TA connection
Dimensions	180 x 30 x 50 mm (7.1 x 1.2 x 2 inches) (L x W x H)
Resolution	±1 % (depending of the sensor type)
Weight	180 g (6.4 oz)

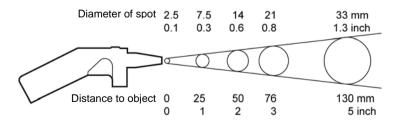

28.4.2 Taking a measurement

Note: see also the paragraph Additional considerations below.

- 1. Plug the Infrared Temperature Probe connector (Lemo) in the Sherlog TA sensor connector.
- 2. Slide the probe switch forward to the « ON » position.
 The Sherlog TA needs 5 seconds to calibrate. While calibrating the message "OFF" is displayed.
- 3. Point the tip of the probe as close as possible to the object being measured without touching the object.
- Read the temperature on the Sherlog TA display.
 Measurements can be time-dated and logged inside the memory of the Sherlog TA.

28.4.3 How to read the displayed data

The display indicates (above left) the connection of a temperature infrared sensor. The display is as follows.


The Sensor options menu with the non-contact infrared temperature sensor.

059

- Connection of a temperature infrared sensor (TEMP MC IR).
- The unit depends of the setting made in the Settings menu.
- The data is as usual (see above paragraphs). Open displayed means that the sensing unit is out of order or no connected.

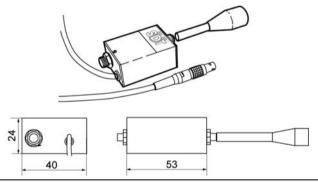
28.4.4 Additional considerations

- After 10 minutes of use the probe will automatically shift to Sleep mode (the display will show 0°C or 0°F). It can be restarted by sliding the switch to « OFF » and then to « ON ».
- Sleep mode extends battery life. However, for maximum battery live, switch the probe to the « OFF » position.
- The distance to spot size ratio (or field of view) refers to the diameter of the spot that the probe is sensing at a given distance. The closer your are to the object (or target), the smaller area (or spot) the probe is sensing. For example, with the probe held at 50 mm (2 in.) distance from the target, the spot size is approximately 13 mm (1/2 in.) Hot spots can be missed if too large an area is included in the field of view, so get as close as possible.

The spot size increases with distance from the probe tip, as shown.

28.5 Mass air flow sensor

28.5.1 Main applications


Fitted with a tip made of flexible rubber, this sensor allows to measure the flow (sccm/scfm) of a compressed air leak. For an accurate measurement, the nozzle must be set so that all the air leakage goes trough the sensor. Two models are available:

- Very small leaks: from -25 till +200 SCCM (0.8x10⁻³ to 7x10⁻³ SCFM).
- Small leaks: from -75 till +1000 SCCM (2.5x10⁻³ to 3.5x10⁻³ SCFM).

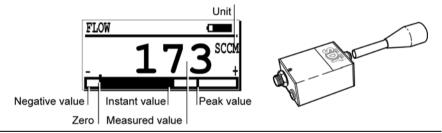
28.5.2 Description

This is a thermal based Mass Flow Sensor fitted with an incorporated conditioning and temperature compensation electronics.

The flow rate can be readout in either SCCM (Standard Cubic Centimeters per Minute) or in SCFM (Standard Cubic Feet per Minute).

External view of the mass air flow sensor.

External non ultrasonic sensors


28.5.3 Technical data

Item	Data
Function	Leak flow rate
Operating pressure	1 Bar max (common mode)
Measuring ranges	-25 till +200 SCCM or -75 till +1000 SCCM (depending of the sensor)
Resolution	1 SCCM
Measuring unit	- SCCM: Standard Cubic Centimetre Minute
	- SCFM: Standard Cubic Feet Minute

28.5.4 How to read the displayed data

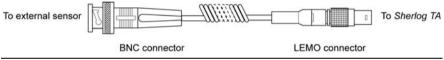
The display indicates:

- Unit: SCFM or SCCM according to the unit chosen (Settings menu).
- Negative value: when a vacuum (depressure) is measured.
- Zero: any pressure/depressure applied.

The Sensor options menu with mass air flow sensor.

29. Cable for external sensors

29.1 BNC TO LEMO 7 PINS CABLE


29.1.1 Use

This cable is used to connect, to the Sherlog TA, the following ultrasonic devices:

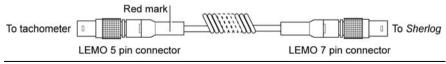
- Flexible sensors.
- Magnetic sensor.
- Threaded sensor.

29.1.2 Description

This is a 0.5 to 2 m coiled cable fitted with a BNC connector and a LEMO connector.

View of the BNC to LEMO 7-pin cable.

078


29.2 LEMO 7 PIN TO LEMO 5 PIN CABLE

29.2.1 Use

This cable is used to connect the *Sherlog TA* with the tachometer.

29.2.2 Description

This is a 0.5 to 2 m coiled cable fitted with a LEMO 5 pin connector and a LEMO 7 pin connector.

View of the LEMO 5 pin to LEMO 7 pin cable.

Technical specifications

30. Sherlog TA

30.1 MEASUREMENT INSTRUMENT

Function	Multifunction detector.
Display	Graphic LCD with backlighting.
Keyboard	8 function keys.
Ultrasonic sensor	Built-in.
External sensors	Through specific connector (Lemo 7 pins).
Data storing	• 1000 locations, each with 4 data storage positions, for ultrasonic and non ultrasonic applications.
	 tamper-proof hatch cover survey routine software with data logging and data transfer capacity.
Communication	RS 232 C communication interface (19,2 kB).
Battery pack	Rechargeable NiMH (Nickel Metal Hydrate).
	Autonomy of 8 to 10 hours without backlighting.
	Recharge time: 5 to 6 hours.
	Nominal Capacity: 1.5 Ah.
	Life span: 500 to 1,000 charge/discharge cycles.
	Recharge only with appropriate SDT charger.
Auto power down	Auto power down after preset time.
Operating temperature	-15 °C to +60 °C / 14 °F to 140 °F.
Housing	Extruded aluminium.
Weight	750 g / 26.45 oz. (with battery and holster included).
Dimensions	225 x 90 x 40 mm / 8.86 x 3.54 x 1.57inches (L x W x H).
Holster	Rubber resistant to hydrocarbons (fluor silicone).
Headphones	130 dB, noise isolating.

30.2 INTERNAL ULTRASONIC SENSOR

Function / type	Open type ultrasonic sensor
Bandwidth (-6 dB)	±2 kHz
Frequency	40 kHz ± 1 kHz
Sensitivity (40 kHz)	-65 dB/V/µBar
Total beam angle	55° typical at -6 dB

30.3 FLEXIBLE SENSOR

Bandwidth (-6 dB)	±3 kHz
Frequency	40 kHz ± 1 kHz
Sensitivity (40 kHz)	-70 dB/V/µBar
Length	820 mm without cable
Diameter	13 mm external, 10 mm internal
Cable length	Coiled 0.5 to 2.0 m

The sensor is supplied with BNC connector and a coiled cable equipped with BNC and 7 pin LEMO connectors. The coiled cable can be stretched to approximately 2 m (6.6 ft).

30.4 BATTERY PACK

For optimum performance, this battery pack is equipped with an electronic management system (includes digital serial number, capacity and temperature management).

Battery type	6 cell, 7.2 V, 1500 mAh, NiMH battery pack.
Dimensions	106 x 52 x 18 mm / 4.17 x 2 x 0.71 inches (L x W x H).
Protections	Short-circuit, reverse polarity and temperature protected.
Weight	190 g / 6.7 oz.
Housing	Glass fibre reinforced polyamide / FR4 Epoxy (contact area).

30.5 BATTERY CHARGER

For optimum performance, this charger is microprocessor controlled.

Charger type	Specific for Sherlog TA, NiMH battery pack.
Power supply	230 (110 VAC on request) +15% / -10% - 50/60 Hz.
Output voltage	7.2 or 9.0 V DC (depending on the operating mode).
Current	500 mA max.
Recharge time	5 to 6 hours typical in fast mode.
	12 to 14 hours typical in slow mode.
Protections	Temperature limitation at 60 °C / 140 °F.
Status indicator	Two color LED type.
Isolation	Double isolation.
Weight	425 g. / 15 oz.
Housing	PPE.

31. SDT 8 Sherlog multi-transmitter multisetting

31.1 Transmission characteristics

Function	Ultrasonic multi-transmitter	
Frequencies	Stabilized at 39.2 and 39.6 kHz (bi-sonic mode).	
Nbr of transducers	8	
Transmission power	Power control in 6 levels	
	Typical values form 1 to 6 : -20dB, -15dB, -9dB, -6dB, -2dB, max.	
Maw trans. Power	8 x 125 mW	
Dispersion	240 °	

31.2 SUPPLY

Voltage/capacity	12V DC/1,2 Ah.	
Battery	Sealed lead-acid gel type rechargeable.	
Recharge	By means of an external charger and integrated connector (without removing the battery) or by using a charge adapter (removing the battery).	
Autonomy	2.5 hours at 20 °C.	
Charging time	6 hours.	
Safety	Chemical control fuse with automatic reset.	

31.3 ON/OFF SWITCH

Command	By On/Off switch
Visual indication	On/Off/Battery charge control indicator. Flashes when undercharged.

31.4 OTHERS

Temperature range	-20° C to +50° C (°F)
Dimensions :	160 x 100 x 95 mm (L x W x H)
Weight	1.5 kg

Appendixes

32. Declaration of conformity in the European Union

Manufacturer SDT International n.v. s.a. Boulevard de l'Humanité 415 B - 1190 BRUSSELS BELGIUM

declares that, under the generic name "SDT 170 Multifunction Detector", the

Sherlog TA Multifunction Detector

making the object of this declaration, is conform to the fundamental description concerning security stipulated in de EMC 89/336/CEE directive.

The equipment contains the CE logo of being compliant to the current CE regulations.

To be able to operate by state of the art rules, as stipulated in the directive, it has been designed by the following rules:

- The Sherlog TA does not radiate electromagnetic waves (EMC);
- The Sherlog TA is immunized against external electromagnetic radiation (EMI);
- The Sherlog TA is protected against electrostatic discharges (ESD).

Note: the owner is obliged to preserve the present users manual with the obligation to pass it on to future users, or been resold to an other user.

Brussels, January 2003. The Manager.

33. Declaration of conformity in the European Union

Manufacturer SDT International n.v. s.a. Boulevard de l'Humanité 415 B - 1190 BRUSSELS BELGIUM

declares that, under the generic name "SDT 8 Ultrasone multi-transmitter", the

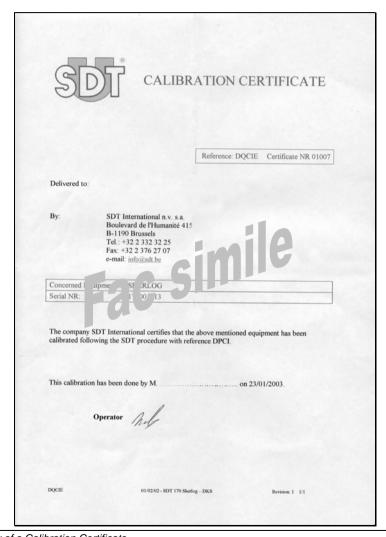
Sherlog Ultrasonic multi-transmitter

being the object of the declaration, conforms to the fundamental descriptions with regard to safety stipulated in the CEM 89/336/EEC directive.

The equipment carries the conformity label CE.

To implement the safety prescriptions stipulated in the Directive as well as possible, the following standards were taken into consideration. So, the transmitter:

- Does not emit any electromagnetic waves (EMC);
- Is immunised against transmissions of external electromagnetic waves (EMI);
- Is protected against electrostatic discharges (ESD).


Note: the owner of the equipment is obliged to keep this manual throughout the entire life of the device and to pass it on to the new buyer if it is resold.

Brussels, March 2003.

The Manager

34. Copies of certificates

Copy of a Calibration Certificate.

Copy of a Certificate of Qualification.

35. Warranty and responsibility limits

35.1.1 Guarantee

Subject as hereinafter set out, **SDT** undertakes to remedy any defect of the equipment resulting from faulty materials or workmanship. The guarantee undertaking includes measures for repairing or replacing the equipment. This liability is limited to defects, which appear:

- For the battery and accessories (such as charger, headphones, sensors, ...) within six (6) months from the delivery of the equipment to the customer,
- For the Sherlog detector and multi-transmitter within twenty-four (24) months from the delivery of the equipment to the customer.

On receipt of the customer's written notification falling within this guarantee SDT shall remedy the defect forthwith and at its own expense. The customer shall return to SDT the equipment, in which a defect covered by this guarantee has appeared, for repair or replacement by SDT, and the delivery to the customer of the equipment properly repaired or replaced shall be deemed to be a fulfilment by SDT of its obligations and a sole and exclusive remedy under this guarantee in respect of such defective equipment.

The customer shall bear the cost and risk of packing and transport of the defective equipment and of the repaired or replaced equipment between the place where the equipment is situated and **SDT** closest office.

SDT's liability shall apply only to defects that appear under the conditions of operation provided for by this Users Manual and in proper use. It does not cover defects due to causes arising after delivery. In particular it does not cover defects arising from the customer's faulty maintenance, installation, handling, service or inspection or non-compliance with **SDT**'s instructions in this Users Manual, in **SDT**'s Technical Specifications or given otherwise or from repairs, alterations or adjustments carried out without **SDT** prior written consent or from repairs, alterations or adjustments carried out improperly by the customer or arising from an accident, nor does it cover normal deterioration, wear and tear.

35.1.2 Limitation of liability

If the customer fails to give notice of a defect that falls within this guarantee during the above stated guarantee period, **SDT** shall be under no liability even in respect of defects due to causes existing before the expiry of the above stated guarantee period.

SDT liability under this guarantee shall in all cases be limited to fifteen per cent (15%) of the purchase price of the equipment. In addition, it is expressly agreed that the customer shall have no claim in respect of personal injury or of damage to property arising before, during or after the above stated guarantee period nor for loss of profit, loss of use or any other indirect, consequential, punitive, special or incidental damages of any kind, whether or not **SDT** has been advised of the possibility of such loss or damage.

35.2 RESPONSIBILITY LIMITS

Neither the company *SDT International*, nor any related company, will in any circumstances be liable for any damages, including, without limitation, damages for loss of business, business interruption, loss of information, defect of the *Sherlog* equipment unit or its accessories, bodily harm, loss of time, financial or material loss or any other indirect or consequential loss arising out of the use, or inability to use this product, even when it has been warned of possible damages.

36. Index

°C, 157 Access the main menu, 27 Access to the memory number, 35 Access to the menus, 18 Accessible menus, 28 Adaptators, 133 Adding a comment, 114 Air leaks, 24 Air mass air flow sensor, 151 Air transport legislation, 53, 59 Aluminum, 157 Amplification indicator, 19 Amplification level, 21 Selection, 91 Amplitude level, 101 ASCII, 83 Asphyxiation, 7 Auto power down, 41, 157 Delay, 41 Auto Power down, 47 Auto power off, 46, 47, 92 Auto power off timer, 46, 47 Auto power off timer, 46, 47 Auto power off, 18 Autonomy, 20, 157 Backlight, 46 Back side, 17, 25 Back view, 23 Backlight, 28 Backlight switch, 17 Backlighting, 18, 29, 41, 157 Backlighting duration, 41 Backlighting timer, 29 Bar graph, 19, 42, 90 Bargraphe, 23 Basic screen, 19 Battery, 25, 171	Capacity left, 50 Charge, 68 Charge level, 66 Charging, 73 Charging support (Multitransmitter), 75 Charging time (Multi-transmitter), 74, 75 Hygrometric limit, 69 Legislation, 70, 73 Number of cycles, 50 Recommendations, 73 Removing (Multi-transmitter), 74 Serial number, 50 Short circuit, 53 Temperature, 69 Transport, 70, 73 Type, 50 Battery charger, 54, 57, 159 Output current, 54 Output voltage, 54 Status indicator light, 55 Battery charger connector, 17, 23 Battery level, 19 Battery pack Charger, 53 Battery pack Charged, 53 Battery pack Discharged, 53 Battery pack Recharging, 55 Battery pack Recharging, 55 Battery pack Recharging, 56 Battery pack Discharged, 56 Battery pack Discharged, 56 Battery pack Discharged, 56 Battery pack Discharged, 59
Basic screen, 19 Battery, 25, 171 Autonomy, 68	Discharged, 59 Battery pack, 157
Capacity, 68	Battery pack, 158

Battery pack's Continuous function, 91 Power, 46, 47 Selection, 90 Battery pack's power, 46, 47 Contrast, 46 Battery pack's temperature, 54 Contrast of display, 41 BNC to LEMO, 153 Corona discharge, 24 Boot, 50 Current, 159 Current time, 19 Browse, 82, 116 Built. 50 Data Cable for external sensors, 153 Display, 34 Capacity, 158 Erase, 83 Erasing, 116 Capacity left, 50 Cargo, 108 Kept, 83 Carrying out an on-site functional Data downloaded test. 101 Using, 83 Celcius, 44, 146 Data storing, 157 Celsius, 48 Capacity, 157 Date, 19, 20, 29, 33, 41, 45, 104 Changing hatch number, 112 Given date, 33 Changing hold number, 112 Charge/discharge of battery pack, dBµV, 42 dbA, 42, 44 53 Declaration of conformity in the Charger, 54, 171 European Union, 165 Charging cycle, 54, 57 Charging the battery, 54 Delav Auto power down, 41 Charging time, 56 Delete measurements, 29, 39 Checking the time and date, 104 Destruction, 8 Choosing the Max value function, 103 Dimensions, 157, 158 Classified zones, 69 Directory, 82, 116 Display, 19, 28, 42, 90, 157 Clock, 29, 41, 45 Backlight, 46 Clock/date, 45 COM. 83 Backlighting, 41 Backlighting duration, 41 COM port, 83 Contrast, 41, 46 COM port setup, 82 Display of information, 34 COM1, 82 Display stored measurements, 29 COM2, 82 Comment, 114 Distributor, 59 Download, 16, 33, 83 Communication, 24, 157 Successfull, 83 Computer, 116 Unsuccessfull, 83 Connecting the detector, 81 Connector Download data, 83 Downloading data, 83 Battery charger, 23 Drain value, 110 Headphones set, 24 PC communication, 24 Memorizing, 110 Contact probe, 29, 42, 43, 124 Duration Backlighting, 41 Contents, 179 EEC declaration of conformity Continuous, 42, 90

Index

Mutitransmitter, 167 Electronic failure, 59 EMC, 167	Store, 39 Holster, 157 Hour, 19
EMI, 167 Emitting level, 102	Housing, 157, 158, 159 Hydrocarbons, 157
End of charging cycle, 54	Imperial, 48
End of life, 8	Information Numbers, 49
End Survey, 83	Infrared temperature sensor, 147
End user, 59	Instant level, 42, 90
Ending the survey, 115	Internal clock, 41, 45
English imperial measurement	Internal error, 59
system, 48	Internal real time clock, 29
Enter, 28	Internal sensor
Entering survey information data,	Sherlog, 87, 101
105	Internal ultrasonic sensor, 24
Equipment	Interrupting a survey, 113
End of life, 8 Erase data, 29, 33, 83	ISO, 48 ISO/Imperial, 48
Erasing a stored value, 89	Isolation, 159
ESD, 167	Issue, 50
External non ultrasonic sensors, 139	Kelvin, 44, 48, 146
External sensor, 24, 25, 90, 157	Key, 18
External sensor connector, 17	Keyboard, 17, 157
External ultrasonic sensors, 121	LCD, 157
Fahrenheit, 44, 48, 146	LCD display, 17
Fast, 44, 140	LCD display's, 29
Fast charging, 55	Leak value
Fast mode, 159	Memorizing, 109
Flexible sensor, 102	LEMO connector, 121
Flexible sensors, 121	Level
Floopy disk, 9	Ultrasonic emitting level, 102
Fluor silicone, 157 Frequency, 29, 66	Life span, 157 Limitation of liability, 172
Front side, 17	Long period without use, 53
Fuse, 78	Lube adapter, 133
Multi-transmitter, 78	Magnetic sensor, 127
Get data, 83, 116	Main menu, 27
Guarantee, 172	Main menu display, 28
Period, 172	Mains supply voltage, 54
Hard disk, 81	Making a measurement, 109
Hatch number, 107	Manual, 167
Store, 39	Purpose, 7
Headphone, 9, 171	User, 7
Headphones connector, 17	Mass air flow sensor, 150
Headphones set connector, 24	Mass flow sensor, 48
Hold number, 107	Max value, 42, 90

Max value function, 92, 103 Control fuse, 78 Selection, 90 Description, 66 Maximal measurement, 42, 90 Dimensions, 162 Maximum signal, 19 Fuse, 78 Measure, 42, 90 Hygrometry range, 162 Continuous variation, 42, 90 Indicator, 73 Indicator (red), 66 Measured data, 21 Measured value, 19, 102 Light indicator, 73 Measurements, 71 Storing, 88 Measurement, 29 On-off switch, 67, 161 On-Off switch, 70, 71 Delete, 39 Operational problems, 59, 77 Making a measurement, 109 Maximal, 42, 90 Package, 65 Storage, 18 Potentiometer, 67 Store, 39 Power supply, 161 Taking, 87 Safety, 69 Measurement instrument, 157 Sensor, 59, 66, 77 Measurements, 71 Technical characteristics, 161 Temperature range, 162 Delete, 29 Stored, 29 Transducers, 101 Measurements stored, 29 Ultrasonic power, 67 MEC, 43, 125 Ultrasonic sensor, 59, 77 Memorised data, 116 Weight, 162 Working position, 70 Memorizing a leak value, 109 Memory, 19, 33, 88 Nickel Metal Hydrate, 157 Memory left, 20 NiMH, 53, 157 Memory location No response of the Sherlog, 83 Nominal capacity, 157 General information, 36 Memory number, 35, 37 Non ultrasonic applications, 87 Access, 35 non ultrasonic sensors, 92 Menus, 28 Non-contact infrared temperature Access, 18 sensor, 147 Metric, 48 Notepad, 83 Microprocessor, 159 Number of cycles, 50 MS word, 83 On/Off switch, 17, 18 Multi transmitter, 108 On-site functional test, 101 Multi-transmitter Open Hatch Value, 108 Memorizing, 108 Battery, 65, 66, 68, 73 Battery autonomy, 68 Open sensors, 130 Battery capacity, 68 Operating principle, 15 Battery charge level, 66 Operating temperature, 157 Battery removal (Multi-Operator safety, 7 transmitter), 75 Output current, 54 Battery voltage, 68 Output voltage, 54, 159 Characteristics, 161 Oxygen, 7 PC, 24, 33, 82, 116 Charge connector, 67

Index

Directory, 82	Selecting a hatch number, 107
Hard disk, 81	Selecting a hold number, 107
Serial port, 82	Selecting the amplification level, 97
PCB, 50	Self-test, 27
Peak, 18, 19	Sensor, 171
Phone connector, 82	Frequency, 71
Port COM, 82	Power, 71
POSITIONING THE MULTI-TRANSMITTER,	Sensor options, 29, 42
102	Serial cable, 82
Power, 66	Serial input, 82
Battery pack, 46, 47	Serial number, 25, 49, 50, 158
Power down timer, 92	Serial port, 82
Power supply, 159	Serviceable, 59
Precision accessories, 24	Set date, 19
Previous survey, 29	Set time, 20
Print a file, 83	Settings, 29 , 41
Printed file, 83	Sherlog, 69
Problem with charging, 55	Amplitude level, 101
Protection, 158, 159	Internal sensor, 87, 101
Protection cap, 24	Switching off, 92
Purpose of the manual, 7	Sherlog detector
Quick reference guide, 61	Battery loader, 9
Rankine, 44, 48, 146	Ship number, 33
Real time clock, 29	Given ship number, 33
Recharge, 157	Short circuit, 53
Recharge time, 157, 159	Signal indicator, 19
Recharging the battery pack, 55, 56	
Recorded data, 33	Slow, 44, 140
Repair, 59	Slow charging, 55
Responsibility limits, 172	SLOW MEC, 43, 125
Risk, 7	Slow mode, 159
RS 232 C, 9, 24, 157	Software
RS 232 connector, 17	Installation, 81
RS232 cable, 9	Setting, 82
Rubber, 157	Transfert software, 81
Rubber tip, 101	Software update, 16
Safety, 69	Software version, 49
Operator, 7	Sound level meter, 42, 44, 139
• •	Sound pressure, 140
SCCM, 48	Start menu, 81
SCFM, 48	Start survey, 29
SDT 200 MW transmitter, 135	Starting a survey procedure, 103
SDT 8 (8 x 125 MW) multi-	Status indicator, 159
transmitter, 136	Status indicator light, 55
SDT 8 (8 x 125 MW) multi-	Storage
transmitter multisetting, 137	Measurement, 18
Select ship, 33	Store measurement

Store, 39 Transducers Store the battery pack, 53 Multi-transmitter, 101 Stored value Transfer software, 81 Erasing, 89 Transfering data, 116 Transport, 171 Viewing, 88 Storing a measured value, 88 Transport legislation, 53, 59 Type of battery, 50 SUB-D 9, 82 Type of measurement system, 29 Supply voltage, 54 Survey Type of sensor, 19 Ending, 115 Type of sensor used, 20 Interrupting, 113 Ultrasonic Previous, 29 Frequency, 71 Survey data, 29, 33 Ultrasonic applications, 87 Survey not stopped, 83 Ultrasonic frequencies, 15 Survey procedure, 29 Ultrasonic multitransmitter, 167 Survey.exe, 82 EEC declaration of conformity, Surveyed data Viewing, 112 Ultrasonic parabolic sensor, 122 Switch off the equipment, 28 Ultrasonic sensor, 17, 24, 66, 157 Switching off Power, 66 Sherlog, 92 Ultrasonic sensors, 90 System info, 29 Ultrasonic signal System Info, 49 Power, 67 Tachometer, 141 Ultrasonic transmitters, 135 Unit of measurement, 19, 29 Taking a measurement, 87 Tank, 108 Update, 50 TC J. K, 45, 146 Updating possibilities, 16 Temp. Unit, 44, 146 US, 43, 126 Temperature, 29, 48, 54, 158, 159 Used memory, 19 Temperature overload, 54 User manual, 7 temperature sensor, 147 Using data downloaded, 83 Text file, 82, 83 Utrasonic emitting level, 102 Thermocouple interface, 42, 144 Vacuum leaks, 24 Thermometer, 44 View data, 29, 35 Threaded sensor, 129 Viewing a stored value, 88 Time, 20, 29, 45, 104 Visualisation of recorded data, 33 Timeout timer, 54 Waterproof, 24 Timer Weight, 157, 158, 159 Auto power off, 46, 47 WordPerfect, 83 Tip, 101

Top panel, 24

37. Contents

Firs	at and foremost	
1. 1.1 1.2 1.3	Foreword Purpose of the manual Operator safety End of life destruction of the equipment	7
2.	Description of the Sherlog TA set	9
3. 3.1 3.2 3.3 3.4	The certificates The type approval certificates The calibration certificate The certificate of qualificaton The certificate of origin	11 12 12
The	SDT Sherlog TA detector	
1110		
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Presentation Operating principle of the Sherlog. Specification of the Sherlog TA. Front and back side (full view) The keyboard. The display The bottom plate view. The front view. The back side.	15 16 17 18 19 23 24 25
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Operating principle of the Sherlog Specification of the Sherlog TA Front and back side (full view) The keyboard The display The bottom plate view The front view	15 16 17 18 19 23 24 25 25

1.	Survey data weriu	
7.1	Access to the function	33
7.2	Using the function	33
8.	View data Menu	35
8.1	Access to the function	
8.2	Using the function	
8.3	What is a Memory Number	
0.0		
9.	Erase Data Menu	39
9.1	Access to the function	
9.2	Using the function	
·		00
10.	Settings Menu	41
10.1	Access to the function	
10.2	The entries of the Settings menu	
10.2	Sensor Options	
10.3	Clock/date	
10.5	Contrast	
10.5	Backlight	
10.7	Auto Pwr Dwn	40
10.7	Iso/Imperial	
10.0	150/IIIIperial	40
11.	System Info Menu	49
11.1	Access to the function	
11.2	The screens	
11.2	1110 00100110	40
12.	The battery pack and the charger	53
12.1	The battery pack	53
12.2	The battery charger	
12.3	Recharging the battery pack	
12.0	restricting the satisfy pack	00
13.	Troubleshooting	59
13.1	Messages on the lcd display	
13.2	Ultrasonic sensor	
10.2		00
14.	Sherlog TA quick reference guide	61
	3 · · · · · · · · · · · · · · · · · · ·	
The	SDT 8 multi-transmitter multisetting	
15.	Description	65
15.1	Package	
15.2	Presentation	
		55

Contents

16.	Using the multi-transmitter	69
16.1	Recommendations	69
16.2	Working position	69
16.3	Powering On	70
16.4	Setting the emetting power	71
16.5	Measurements	71
16.6	Powering Off	71
17.	Charging the multi-transmitter battery pack	
17.1	Recharging the battery	73
18.	The multi-transmitter operational problems	77
18.1	Ultrasonic transducer	77
18.2	Control fuse	78
The	transfer software	
19.	Using the transfer software	81
19.1	Installation of the software	
19.2 19.3	Connecting the detector	
19.3	Erasing the data	
13.4	Liasing the data	00
Usir	ng the SDT Sherlog	
20.	Operating procedure	87
20.1	Preparing the detector	
20.1	Taking a measurement	
20.3	Storing a measured value	
20.4	Viewing a previous stored value	
20.5	Erasing a stored value	
20.6	Using ultrasonic sensors	90
20.7	Using non ultrasonic sensors	92
20.8	Switching off the equipment	92
-	on the CDT Charles for an IICO massalina	
USII	ng the SDT Sherlog for an HCO procedure	
21.	Main questions and answers relating to ultrasonic tests	95
21.1	What is an ultrasonic test ?	
21.2	For that purpose ?	95

21.3	What equipement to use ?	95
22.	Some reminders	97
22.1	Dealing with the ship's staf	
22.2	Preparing for survey	
22.3	Using ultrasonic testing material	
23.	The Class required hatch cover ultrasonic tightness surv	
00.4	procedure Carrying out an on-site functional test	
23.1 23.2	Positioning the multi-transmitter	
23.2 23.3	Starting a survey procedure	
23.3 23.4	Transferring the survey data to a computer	
23.4	Transiering the survey data to a computer	110
Sen	sors and options	
24.	The whole range of sensors	119
25.	External ultrasonic sensors	121
25.1	Flexible sensors	
25.2	Parabolic sensor	
25.3	Contact probe	
25.4	Magnetic sensor	
25.5	Threaded sensor	
25.6	Open sensors	
26.	Adaptator for ultrasonic sensors	133
26.1	Lube adapter	133
	·	
27.	Ultrasonic transmitters	135
27.1	SDT 200 mW transmitter	
27.2	SDT 8 (8 x 125 mW) multi-transmitter	
27.3	SDT 8 (8 x 125 mW) multi-transmitter multisetting	137
28.	External non ultrasonic sensors	139
28.1	Sound level meter	
28.2	Tachometer	
28.3	Thermocouple interface	
28.4	Non contact infrared temperature sensor	
28.5	Mass air flow sensor	

Contents

	Cable for external sensors153
29.1	BNC to LEMO 7 pins cable153
29.2	Lemo 7 pin to Lemo 5 pin cable
lec	hnical data
30.	Sherlog TA157
30.1	Measurement instrument
30.2	Internal ultrasonic sensor
30.3	Flexible sensor
30.4	Battery pack
30.5	Battery charger159
31.	SDT 8 Sherlog multi-transmitter multisetting161
31.1	Transmission characteristics
31.2	Supply
31.3 31.4	On/Off switch
31.4	Others
App	endix
Арр	endix
App 32.	endix Declaration of conformity in the European Union165
32.	Declaration of conformity in the European Union165
32. 33.	Declaration of conformity in the European Union165 Declaration of conformity in the European Union167
32. 33. 34. 35.	Declaration of conformity in the European Union
32. 33. 34. 35. 35.2	Declaration of conformity in the European Union
32. 33. 34. 35. 35.2	Declaration of conformity in the European Union
32. 33. 34. 35. 35.2	Declaration of conformity in the European Union

Your Sherlog TA detector

